Morphometric analysis of reserve substances and ultrastructural changes during caulogenic determination and loss of competence of Eastern White pine (Pinus strobus) cotyledons in vitro

1989 ◽  
Vol 67 (3) ◽  
pp. 779-789 ◽  
Author(s):  
Barry S. Flinn ◽  
David T. Webb ◽  
William Newcomb

Lipid, starch, and protein reserves were monitored cytochemically and, along with certain ultrastructural changes, were quantified morphometrically during adventitious shoot determination or loss of competence in cotyledons from cultured Pinus strobus zygotic embryos. Initial expiants were rich in lipid, which declined during culture. There was more lipid retention in explants on cytokinin medium by day 5 than on basal medium. However, by day 7, five- and six-celled clusters showed greater lipid utilization than most other cells on cytokinin, which may have indicated a shift towards shoot determination in these cells. Except for an initially greater retention on cytokinin, a similar pattern for storage protein degradation was observed in both treatments. Starch levels increased during culture, but did not differ between treatments during the first 7 days. Vacuolation increased during culture and was greater on basal medium than on cytokinin. Relative nuclear size also increased, but was greater on cytokinin. Relative mitochondrial area increased during culture, except in noncluster cells on basal medium. While few differences were noted between cell types within each treatment, distinct differences in nuclear size, vacuolation, and lipid content existed between cells on cytokinin and basal medium. These coincided with the timing of caulogenic determination in cytokinin-treated expiants. The loss of lipid reserves, as well as ultrastructural changes associated with the maturation of cells on basal medium, was associated with the loss of competence.

Author(s):  
K. Shankar Narayan ◽  
Kailash C. Gupta ◽  
Tohru Okigaki

The biological effects of short-wave ultraviolet light has generally been described in terms of changes in cell growth or survival rates and production of chromosomal aberrations. Ultrastructural changes following exposure of cells to ultraviolet light, particularly at 265 nm, have not been reported.We have developed a means of irradiating populations of cells grown in vitro to a monochromatic ultraviolet laser beam at a wavelength of 265 nm based on the method of Johnson. The cell types studies were: i) WI-38, a human diploid fibroblast; ii) CMP, a human adenocarcinoma cell line; and iii) Don C-II, a Chinese hamster fibroblast cell strain. The cells were exposed either in situ or in suspension to the ultraviolet laser (UVL) beam. Irradiated cell populations were studied either "immediately" or following growth for 1-8 days after irradiation.Differential sensitivity, as measured by survival rates were observed in the three cell types studied. Pattern of ultrastructural changes were also different in the three cell types.


1990 ◽  
Vol 259 (6) ◽  
pp. L415-L425 ◽  
Author(s):  
P. E. Roberts ◽  
D. M. Phillips ◽  
J. P. Mather

A novel epithelial cell from normal neonatal rat lung has been isolated, established, and maintained for multiple passages in the absence of serum, without undergoing crisis or senescence. By careful manipulation of the nutrition/hormonal microenvironment, we have been able to select, from a heterogeneous population, a single epithelial cell type that can maintain highly differentiated features in vitro. This cell type has characteristics of bronchiolar epithelial cells. A clonal line, RL-65, has been selected and observed for greater than 2 yr in continuous culture. It has been characterized by ultrastructural, morphological, and biochemical criteria. The basal medium for this cell line is Ham's F12/Dulbecco's modified Eagle's (DME) medium plus insulin (1 micrograms/ml), human transferrin (10 micrograms/ml), ethanolamine (10(-4) M), phosphoethanolamine (10(-4) M), selenium (2.5 x 10(-8) M), hydrocortisone (2.5 x 10(-7) M), and forskolin (5 microM). The addition of 150 micrograms/ml of bovine pituitary extract to the defined basal medium stimulates a greater than 10-fold increase in cell number and a 50- to 100-fold increase in thymidine incorporation. The addition of retinoic acid results in further enhancement of cell growth and complete inhibition of keratinization. We have demonstrated a strategy that may be applicable to isolating other cell types from the lung and maintaining their differentiated characteristics for long-term culture in vitro. Such a culture system promises to be a useful model in which to study cellular events associated with differentiation and proliferation in the lung and to better understand the molecular mechanisms involved in these events.


1970 ◽  
Vol 18 (2) ◽  
pp. 173-179 ◽  
Author(s):  
T. Mallikadevi ◽  
P. Senthilkumar ◽  
S. Paulsamy

The in vitro regeneration of Plubago zeylanica exhibited that the callus was initiated in the basal medium containing BAP, NAA, 2, 4-D, and IBA.  The high amount (90%) of organic calli was induced in the basal medium supplemented with 2, 4-D, alone at 2.0 mg/l. In the subculture the adventitious shoot formation was prominently higher (83%) in the basal medium containing BAP, and NAA at 3.5 and 0.3 mg/l, respectively. IAA (1.0 mg/l)effectively produced higher percen-tage (90) of roots and root growth. After sequential hardening, survivability rate was observed to be significantly higher (80%) in the hardening medium containing garden soil, sand and vermicompost in the ratio of 1 : 1 : 1 by volume under greenhouse condition.  Key words: Plumbago zeylanica, In vitro regeneration, Medicinal plant D.O.I. 10.3329/ptcb.v18i2.3648 Plant Tissue Cult. & Biotech. 18(2): 173-179, 2008 (December)


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 755
Author(s):  
Angela Ricci ◽  
Luca Capriotti ◽  
Bruno Mezzetti ◽  
Oriano Navacchi ◽  
Silvia Sabbadini

In the present study, an efficient system for the in vitro regeneration of adventitious shoots from the peach rootstock Hansen 536 leaves has been established. Twenty regeneration media containing McCown Woody Plant Medium (WPM) as a basal salt supplemented with different concentrations and combinations of plant growth regulators (PGRs) were tested. Expanded leaves along with their petiole from 3-week-old elongated in vitro shoot cultures were used as starting explants. The highest regeneration rate (up to 53%) was obtained on WPM basal medium enriched with 15.5 μM N6-benzylaminopurine (BAP). The influences on leaf regeneration of the ethylene inhibitor silver thiosulphate (STS) and of different combinations of antibiotics added to the optimized regeneration medium were also investigated. The use of 10 μM STS or carbenicillin (238 μM) combined with cefotaxime (210 μM) significantly increased the average number of regenerating shoots per leaf compared to the control. In vitro shoots were finally elongated, rooted and successfully acclimatized in the greenhouse. The results achieved in this study advances the knowledge on factors affecting leaf organogenesis in Prunus spp., and the regeneration protocol described looks promising for the optimization of new genetic transformation procedures in Hansen 536 and other peach rootstocks and cultivars.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1137G-1138
Author(s):  
Len Burkhart ◽  
Martin Meyer ◽  
S. Dorner

Rooting of shoots from in vitro culture of most conifers can be difficult. An antigibberellin, ancymidol, has been shown to promote rooting of in vitro proliferated shoots of asparagus clones, but it has not been tested on conifers. Ancymidol and flurprimidol was tested for rooting on established cultures of Lake States white pine (Pinus strobus). Pulse treatments containing 5 uM ancymidol and 0.5 uM NAA gave 43% rooting, while pulse treatment with 0.5 uM NAA resulted in 7% root formation. Flurprimidol also stimulated root formation on white pine shoots, but was less than ancymidol. Thuja occidentalis `Hetz's Wintergreen' formed roots on 87% of in vitro proliferated shoots when given a pulse treatment with 5 uM ancymidol and 50 uM NAA. Shoots initiated an average of 10 roots after 60 days on vermiculite containing 1/2 liquid MCM medium.


1994 ◽  
Vol 24 (3) ◽  
pp. 523-526 ◽  
Author(s):  
Osmar Alves Lameira ◽  
Marly Pedroso da Costa ◽  
José Eduardo Brasil Pereira Pinto

Multiple adventitious shoot formed from internodal segments of Cephaelis ipecacuanha cultured 25 days on Gamborg basal medium (GAMBORG et al., 1968) supplemented with 6.66mM 6-benzylaminopurine there was a maximum of nine shoots per segment and an average of five shoots per segment formed. The presence of gibberellic acid in the subculture media promoted shoot elongation in all treatments. The shoots attained 3cm in height and rooting of 100% after 35 days of culturing upon Murashige and Skoog's basal medium (MS), added with 4.92mM indole-3-butyric acid, 0.87m gibberellic acid and 0.1% activated charcoal. Further growth was accelerated after the transfer to 1/2 MS without growth regulators. Rooted plantlets transferred to potting soil could be successfully established.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 471B-471
Author(s):  
Agustin Huerta ◽  
Ramon Dolcet-Sanjuan

Adventitious shoots and viable plants were regenerated from bell pepper (Capsicum annuum L.) cultivars and dihaploid lines (DHLs) obtained from F1 hybrids via androgenesis (Dolcet-Sanjuan et al., in press). Hypocotil and cotyledon sections from in vitro-germinated seeds were used as explants. A modified MS medium (Murashige and Skoog, 1962) supplemented with IAA (0 to 3.2 μM) and BAP (0 to 100 μM) was used in a 3-week-long shoot primordia induction phase. Shoot elongation was best performed in the same basal medium, but supplemented with silver thiosulfate and GA3. Shoots were regenerated from eight selected DHLs (`C213', `C215', `C218', `C2123', `C2125', `C3111', `C3113', and `P493') and two cultivars (`Padrón' and `Yolo Wonder'). The percentage of cotyledon sections with shoot primordia after the induction phase was not genotype-dependent and always higher than with hypocotil sections (93.4% and 17.9%, respectively). The number of shoot primordia per responsive cotyledon section was also higher than with hypocotil sections (3.3 and 1.7, respectively). The genotype had a significant effect on the number of shoots regenerated per responsive cotyledon (1.1 to 5.5) or hypocotil (0.5 to 3.5) section. All adventitiously regenerated plants were fertile. This adventitious shoot regeneration protocol is being used to obtain transgenic plants from sweet bell pepper genotypes.


HortScience ◽  
2006 ◽  
Vol 41 (5) ◽  
pp. 1325-1329 ◽  
Author(s):  
Martín Mata-Rosas ◽  
Ángel Jiménez-Rodríguez ◽  
Victor M. Chávez-Avila

Plants of Magnolia dealbata were regenerated from zygotic embryos through somatic embryogenesis and direct organogenesis. Medium and incubation conditions were determinating factors for the development of morphogenetic responses. Photoperiodic exposure was a limiting factor in the general development of the explants, and incubation in darkness allowed their development. The highest formation of shoots per responding explant were obtained on woody plant (WP) medium supplemented with 13.3 μM or 22.2 μM 6-benzylaminopurine (BA) in combination with 2.26 μM or in absence of 2,4-dichlorophenoxyacetic acid (2,4-D) from which 2.5 shoots per explant were induced. Subcultures on WP medium, supplemented with polyvinylpyrrolidone (PUP) 40,000 1 g·L–1) avoided necrosis of explants. Somatic embryos were formed in 85% of explants cultivated on WP medium with 2,4-D (2.3 μM or 4.5 μM); 20% induced indirect embryogenesis and 65% formed direct somatic embryogenesis. The plants were transferred to soil to acclimatize under greenhouse conditions, achieving 90% survival. Somatic embryo conversion to plantlets was obtained with subculture on WP basal medium without growth regulators. In vitro culture can play a key role in the propagation and conservation of this endangered species.


Sign in / Sign up

Export Citation Format

Share Document