Effect of auxin and phenobarbital on the ultrastructure and digitoxin content in Digitalis purpurea tissue culture

1996 ◽  
Vol 74 (3) ◽  
pp. 378-382 ◽  
Author(s):  
Mercedes Bonfill ◽  
Javier Palazón ◽  
Rosa M. Cusidó ◽  
M. Teresa Piñol ◽  
Carmen Morales

Callus derived from Digitalis purpurea hypocotils were grown during a 6-week period on solid Murashige–Skoog medium supplemented with 1 mg/L 6-benzylaminopurine, 0.01 mg/L gibberellic acid and 0.1 mg/L indole-3-acetic acid or α-naphthaleneacetic acid, with or without phenobarbital (40 mg/L). The presence of phenobarbital in the culture medium caused a reduction of the vacuole/cytoplasm ratio. At the same time, the chloroplastic volume fraction decreased in callus tissue cells grown in media supplemented with phenobarbital, while the mitochondrial volume ratio increased. Digitoxin content was enhanced in callus tissues, especially in those grown on indole-3-acetic acid medium supplemented with phenobarbital. The relationship between ultrastructure of D. purpurea callus and digitoxin content is discussed. Keywords: Digitalis purpurea tissue cultures, digitoxin, phenobarbital, mitochondria, chloroplast.

1982 ◽  
Vol 60 (12) ◽  
pp. 2547-2555 ◽  
Author(s):  
Gaëtan Harvais

A new medium for growing Cypripedium reginae Walt. axenically from seed was designed. Liquid culture proved unsuitable, hence a 1% agar medium supplemented with 5% potato extract was used to investigate optimal mineral element, vitamin, amino acid, sugar, and growth regulator supplements for germination, and subsequent growth. A modified Pfeffer solution with 1400 mg/L NH4NO3 + 19 mg/L ammonium citrate + 2% dextrose + 10 mg/L niacin + 5 mg/L calcium pantothenate + 5 mg/L thiamine HCl + 1 mg/L kinetin + 0.1 mg/L α-naphthaleneacetic acid gave best germination and growth to 2 years with little or no phenolic production. Gamborg's B5 medium and Murashige–Skoog (MS) medium were less than optimal when tested against the above medium. Growth regulators were more active when sterilized by membrane filtration instead of autoclaving. Of the three aminopurines tested, kinetin, benzylaminopurine (BAP), and 6(γ,γ-dimethylallylamino) purine (γγ), the order of activity was initially γγ → BAP → kinetin, but kinetin produced better greening of protocorms and plantlets, and eventually greater survival. Hence, it was chosen for further study. The auxins indole-3-acetic acid (IAA), naphthalene acetic acid (NAA), indole-3-butyric acid (IBA), and 2,4-dichlorophenoxyacetic acid (2,4-D) were also tested alone and in combination with the aminopurines. They did not stimulate germination, but improved growth and survival when combined with aminopurines. The most active of the auxins were NAA → IAA → IBA → 2,4-D. A kinetin:NAA ratio of 10:1 was very satisfactory.


2018 ◽  
Vol 11 (1) ◽  
pp. 237
Author(s):  
Tebogo Stimela ◽  
Remmy W. Kasili ◽  
Edward G. Mamati

In recent years, the awareness of pomegranate health benefits has grown exponentially; nonetheless the existing propagation methods remain a challenge to supply adequate suitable planting materials needed for commercial production. Micropropagation can lead to mass production of plantlets and callus-mediated in vitro regeneration can open avenues for the use of genetic engineering to improve this crop. The aim of this study was to evaluate appropriate conditions for pomegranate micropropagation, callogenesis and use Simple Sequence Repeat markers to screen for somaclonal variation. Cytokinins (Benzylaminopurine, Kinetin and Thiadiazol-5ylurea) were tested for shoot induction from nodal explants while auxins (1-Naphthaleneacetic acid, Indole-3-butyric acid and Indole-3-acetic acid) were tested for root induction of in vitro regenerated shoots. 1-Naphthaleneacetic acid combined with Benzylaminopurine was assessed for their ability to induce callus from cotyledon and leaf explants. Genetic integrity between mother plant, callus and in vitro regenerated shoots were assessed using eight Simple Sequence Repeat markers. Maximum number of shoots and leaves were obtained on full strength Murashige and Skoog media with 6.9 µM kinetin. The highest number of roots was achieved on half strength Murashige and Skoog media with 4.9 µM Indole-3-butyric acid and the longest root was got on half strength Murashige and Skoog media with 5.3 µM Indole-3-acetic acid. Leaves and cotyledons demonstrated to be potential explants for callus formation at all hormonal combination levels tested. Eight out of 13 amplified alleles were polymorphic. A wider genetic variation was found with similarity coefficient range of 0.46-0.92. More somaclonal variation was in regenerated shoots compared to callus.


1986 ◽  
Vol 64 (11) ◽  
pp. 2716-2718 ◽  
Author(s):  
A. Raymond Miller ◽  
Lorin W. Roberts

The possible relationship between tracheary element number and lignin content was studied in cultured soybean (Glycine max L. var. Wayne) cotyledon callus. Callus initiated on 4.5 μM 2,4-dichlorophenoxyacetic acid contained 3.0 × 104 tracheary elements per gram fresh weight and 41 μg lignin per milligram dry weight after 10 days incubation, and these values did not vary significantly after two subsequent transfers (7 days each) to a medium containing 0.1 μM α-naphthaleneacetic acid and 0.01 μM kinetin. Transfer of this callus to a medium supplemented with 60 μM indole-3-acetic acid and 0.5 μM kinetin resulted in significant increases in tracheary element number and lignin content (290 and 56%, respectively). A time-course study revealed that both tracheary element number and lignin content reached a maximum 5 to 6 days after transfer to the medium containing indole-3-acetic acid and kinetin. However, when total callus lignin content was plotted against total tracheary element number, no statistically significant relationship was found. The formation of lignin not associated with tracheary elements may have been a factor. These results indicate that the induction of tracheary element formation and lignification in soybean callus have similar hormonal requirements, but lignification occurs independently of tracheary element formation in this system.


1993 ◽  
Vol 48 (1-2) ◽  
pp. 35-40 ◽  
Author(s):  
Andreas Jacobi ◽  
Rolf Zettl ◽  
Klaus Palme ◽  
Dietrich Werner

Binding of tritiated indole-3-acetic acid ([3H]IAA) to symbiosome membranes of soybean nodules occurred in a protein-dependent manner and was competitively inhibited by unlabeled indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (1-NAA) and dithiothreitol (DTT), but not by tryptophan and benzoic acid. The symbiosome membranes bound IAA with a KD of 1 × 10-6 m. Photoaffinity labeling identified an auxin-binding protein (ABP) in the symbiosome membrane with an apparent molecular mass of 23 kDa. This 23 kDa protein was labeled either with 5-azido-[7-3H]indole-3-acetic acid ([3H]N3IAA) or with 5′-azido-[3,6-3H2]-1-naphthylphthalamic acid ([3H2]N3NPA). Labeling of the 23 kDa protein with [3H]N3IAA was competitively inhibited by unlabeled IAA and 1-NAA. NPA and quercetin, inhibitors of polar auxin transport, as well as rutin, a glycosylated derivative of quercetin, competed with IAA for binding. Conversely, [3H2]N3NPA labeling was inhibited by unlabeled IAA and NPA. The 23 kDa symbiosome membrane protein was partially solubilized with Triton X-100 and nearly completely using Triton X-114. The observation that auxin transport inhibitors compete with IAA for binding suggests that the symbiosome membrane ABP could be part of an auxin efflux carrier system required to control the auxin concentration in infected soybean nodule cells.


1980 ◽  
Vol 58 (6) ◽  
pp. 741-744 ◽  
Author(s):  
Deepak Pental ◽  
J. E. Gunckel

Haploid embryos were produced by Triticum aestivum × Hordeum bulbosum crosses. Approximately 4300 florets of T. aestivum cv. Chinese Spring were emasculated and pollinated with pollen of diploid and tetraploid H. bulbosum. Haploid seeds started aborting 8–10 days after pollination and at this stage embryos were excised. Total haploid embryo set was only 0.2%.Callus was induced from the haploid embryos and root apices excised from the haploid plants on T medium + 1 mg/L 2,4,5-trichlorophenoxyacetic acid. These calli were subcultured once and then put on differentiation media: T medium and T medium with indole-3-acetic acid (IAA), naphthaleneacetic acid (NAA), IAA + 6-furfurylaminopurine (kinetin, K), or NAA + K. Histologically, calli growing on auxin medium were heterogeneous with peripheral meristematic loci embedded in a parenchymatous mass of cells. On differentiation media calli produced copious roots from the meristematic loci. One callus on control medium (T only) gave rise to an isolated shoot. The chromosome number of differentiated roots was always 2n = 3 = 21.


HortScience ◽  
1995 ◽  
Vol 30 (6) ◽  
pp. 1292-1294 ◽  
Author(s):  
Barbara M. Reed

Micropropagated shoots of 49 Pyrus species and cultivars and one selection of Pyronia veitchii (Trabut) Guillaumin were evaluated to test their responses to several in vitro rooting techniques. Auxin treatment was required for rooting in most cases. Eighteen of 50 accessions rooted ≥50% with a 15-second, 10-mm IBA dip followed by growth on medium with no growth regulators (NGR). Twelve accessions rooted on a medium with 10 μm IBA applied for 1 week followed by NGR medium for 3 weeks; NGR medium alone was effective for only two accessions. Twenty-eight accessions rooted poorly with IBA treatments; an additional treatment of a 15-second dip in 10 mm NAA followed by NGR medium produced ≥50% rooting for eight genotypes. Root production increased for 10 of 19 especially recalcitrant genotypes by 10 μm IAA treatments in darkness or at 30C and NAA dip treatments. Of rooted shoots, 73% survived acclimation in the greenhouse. Selections of Pyrus betulifolia Bunge, P. calleryana Decne., P. hondoensis Kikuchi and Nakai, P. koehnei C. Schneider, P. pashia Buch.-Ham. ex D. Don, P. pyrifolia (Burm.f.) Nakai cv. Shinseiki, P. regelii Rheder, P. ussuriensis Maxim., and the Pyronia veitchii selection failed to root in any of the treatments. Twenty-five of 32 P. communis L. cultivars and three other species rooted on at least one of the treatments. Chemical names used: 1-naphthaleneacetic acid (NAA), 1H-indole-3-butyric acid (IBA), 1H-indole-3-acetic acid (IAA).


1999 ◽  
Vol 181 (4) ◽  
pp. 1338-1342 ◽  
Author(s):  
Ann Vande Broek ◽  
Mark Lambrecht ◽  
Kristel Eggermont ◽  
Jos Vanderleyden

ABSTRACT Transcription of the Azospirillum brasilense ipdC gene, encoding an indole-3-pyruvate decarboxylase involved in the biosynthesis of indole-3-acetic acid (IAA), is induced by IAA as determined by ipdC-gusA expression studies and Northern analysis. Besides IAA, exogenously added synthetic auxins such as 1-naphthaleneacetic acid, 2,4-dichlorophenoxypropionic acid, andp-chlorophenoxyacetic acid were also found to upregulateipdC expression. No upregulation was observed with tryptophan, acetic acid, or propionic acid or with the IAA conjugates IAA ethyl ester and IAA-l-phenylalanine, indicating structural specificity is required for ipdC induction. This is the first report describing the induction of a bacterial gene by auxin.


2000 ◽  
Vol 13 (2) ◽  
pp. 151-158 ◽  
Author(s):  
Franck Anicet Ditengou ◽  
Frédéric Lapeyrie

Very little is known about the molecules regulating the interaction between plants and ectomycorrhizal fungi during root colonization. The role of fungal auxin in ectomycorrhiza has repeatedly been suggested and questioned, suggesting that, if fungal auxin controls some steps of colonized root development, its activity might be tightly controlled in time and in space by plant and/or fungal regulatory mechanisms. We demonstrate that fungal hypaphorine, the betaine of tryptophan, counteracts the activity of indole-3-acetic acid (IAA) on eucalypt tap root elongation but does not affect the activity of the IAA analogs 2,4-D ((2,4-dichlorophenoxy)acetic acid) or NAA (1-naphthaleneacetic acid). These data suggest that IAA and hypaphorine interact during the very early steps of the IAA perception or signal transduction pathway. Furthermore, while seedling treatment with 1-amincocyclopro-pane-1-carboxylic acid (ACC), the precursor of ethylene, results in formation of a hypocotyl apical hook, hypaphorine application as well as root colonization by Pisolithus tinctorius, a hypaphorine-accumulating ectomycorrhizal fungus, stimulated hook opening. Hypaphorine counteraction with ACC is likely a consequence of hypaphorine interaction with IAA. In most plant-microbe interactions studied, the interactions result in increased auxin synthesis or auxin accumulation in plant tissues. The P. tinctorius / eucalypt interaction is intriguing because in this interaction the microbe down-regulates the auxin activity in the host plant. Hypaphorine might be the first specific IAA antagonist identified.


Sign in / Sign up

Export Citation Format

Share Document