Epigenetics in idiopathic pulmonary fibrosis

2015 ◽  
Vol 93 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Argyrios Tzouvelekis ◽  
Naftali Kaminski

Idiopathic pulmonary fibrosis (IPF) is a lethal chronic lung disorder with no effective treatment and a prognosis worse than that of lung cancer. Despite extensive research efforts, its etiology and pathogenesis still remain largely unknown. Current experimental evidence has shifted the disease paradigm from chronic inflammation towards the premise of abnormal epithelial wound repair in response to repeated epigenetic injurious stimuli in genetically predisposed individuals. Epigenetics is defined as the study of heritable changes in gene function by factors other than an individual’s DNA sequence, providing valuable information regarding adaption of genes to environmental changes. Although cancer is the most studied disease with relevance to epigenetic modifications, recent data support the idea that epigenomic alterations may lead to variable disease phenotypes, including fibroproliferative lung disorders such as IPF. This review article summarizes the latest experimental and translational epigenetic studies in the research field of chronic lung disorders, mainly focusing on IPF, highlights current methodology limitations, and underlines future directions and perspectives.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiyue Zhang ◽  
Wei Li ◽  
Chunyan Li ◽  
Jie Zhang ◽  
Zhenzhong Su

Abstract Background Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease with unclear pathogenesis. IPF is considered as a risk factor for lung cancer. Compared to other lung cancers, small-cell lung cancer (SCLC) has a lower incidence, but has a more aggressive course. Patients with IPF and SCLC have a lower survival rate, more difficult treatment, and poorer prognosis. Case presentation Case 1 was of a 66-year-old man with IPF for 5 years, who was admitted to our hospital for dyspnea. Case 2 was of a 68-year-old woman, who presented with chest pains, cough, and dyspnea. Both patients had extremely poor lung function. High-resolution computed tomography and pathology revealed that both patients had IPF and SCLC. Chemotherapy comprising nedaplatin (80 mg/m2) and etoposide (100 mg for 5 days) was initiated for both patients. Antifibrotic agents were continued during the chemotherapeutic regimen. Both patients showed improvement in their condition after treatment. Conclusion The favorable outcomes in these 2 cases suggests that chemotherapy is worth considering in the management of patients having SCLC and IPF with poor lung function.


2021 ◽  
Vol 20 ◽  
pp. 483-496
Author(s):  
Mitchel J.R. Ruigrok ◽  
Henderik W. Frijlink ◽  
Barbro N. Melgert ◽  
Peter Olinga ◽  
Wouter L.J. Hinrichs

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasuto Yoneshima ◽  
Eiji Iwama ◽  
Shingo Matsumoto ◽  
Taichi Matsubara ◽  
Testuzo Tagawa ◽  
...  

AbstractGenetic alterations underlying the development of lung cancer in individuals with idiopathic pulmonary fibrosis (IPF) have remained unclear. To explore whether genetic alterations in IPF tissue contribute to the development of IPF-associated lung cancer, we here evaluated tumor mutation burden (TMB) and somatic variants in 14 paired IPF and tumor samples from patients with IPF-associated lung adenocarcinoma. We also determined TMB for 22 samples of lung adenocarcinoma from patients without IPF. TMB for IPF-associated lung adenocarcinoma was significantly higher than that for matched IPF tissue (median of 2.94 vs. 1.26 mutations/Mb, P = 0.002). Three and 102 somatic variants were detected in IPF and matched lung adenocarcinoma samples, respectively, with only one pair of specimens sharing one somatic variant. TMB for IPF-associated lung adenocarcinoma was similar to that for lung adenocarcinoma samples with driver mutations (median of 2.94 vs. 2.51 mutations/Mb) and lower than that for lung adenocarcinoma samples without known driver mutations (median of 2.94 vs. 5.03 mutations/Mb, P = 0.130) from patients without IPF. Our findings suggest that not only the accumulation of somatic mutations but other factors such as inflammation and oxidative stress might contribute to the development and progression of lung cancer in patients with IPF.


2018 ◽  
Vol 244 (4) ◽  
pp. 383-385 ◽  
Author(s):  
Stephen B Strock ◽  
Jonathan K Alder ◽  
Daniel J Kass

Sign in / Sign up

Export Citation Format

Share Document