scholarly journals Promoting effect of lactoferrin on barrier function and epithelial differentiation of human keratinocytes

2017 ◽  
Vol 95 (1) ◽  
pp. 64-68 ◽  
Author(s):  
Ryo Uchida ◽  
Reiji Aoki ◽  
Ayako Aoki-Yoshida ◽  
Atsushi Tajima ◽  
Yoshiharu Takayama

The purpose of this study was to elucidate the effects of bovine lactoferrin on keratinocyte differentiation and barrier function. Addition of bovine lactoferrin to differentiating HaCaT human keratinocytes led to increased transepithelial electrical resistance (TER), a marker of epithelial barrier function. This elevation was followed by upregulation of two differentiation markers, involucrin and filaggrin. The expression level of sterol regulatory element-binding protein-1 was also enhanced by bovine lactoferrin. The lactoferrin-induced upregulation of involucrin and filaggrin expression were confirmed in normal human epidermal keratinocytes (NHEK). Treatment with SB203580, a p38 mitogen-activated protein kinase (MAPK) α inhibitor, impaired the upregulation of involucrin and filaggrin expression in response to lactoferrin. The elevation of p38 MAPK phosphorylation was further enhanced by lactoferrin in the initial stage of differentiation of HaCaT keratinocytes. The findings suggest that bovine lactoferrin promotes epithelial differentiation by a p38-MAPK-dependent mechanism.

Author(s):  
A. R. Crooker ◽  
M. C. Myers ◽  
T. L. Beard ◽  
E. S. Graham

Cell culture systems have become increasingly popular as a means of screening toxic agents and studying toxic mechanisms of drugs and other chemicals at the cellular and subcellular levels. These in vitro tests can be conducted rapidly in a broad range of relevant mammalian culture systems; a variety of biological and biochemical cytotoxicity endpoints can be examined. The following study utilized human keratinocytes to evaluate the relative cytotoxicities of nitrofurazone (NF) and silver sulfadiazine (SS), the active ingredients of FURACIN(R) Topical Cream and SILVADENE(R) Cream, respectively. These compounds are anti-infectives used in the treatment of burn patients. Cell ultrastructure and elemental composition were utilized as cytotoxicity endpoints.Normal Human Epidermal Keratinocytes (HK) were prepared from the EpiPackTM culture system (Clonetics Corporation, Boulder, CO). For scanning electron microscopy (SEM) and transmission electron microscopy (TEM), cells were seeded on sterile 35 mm Falcon plastic dishes; for elemental microanalysis, cells were plated on polished pyrolytic carbon discs (E. Fullam, Latham, NY) placed in the culture dishes.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nicolas Joly-Tonetti ◽  
Thomas Ondet ◽  
Mario Monshouwer ◽  
Georgios N. Stamatas

Abstract Background Cutaneous adverse drug reactions (CADR) associated with oncology therapy involve 45–100% of patients receiving kinase inhibitors. Such adverse reactions may include skin inflammation, infection, pruritus and dryness, symptoms that can significantly affect the patient’s quality of life. To prevent severe skin damages dose adjustment or drug discontinuation is often required, interfering with the prescribed oncology treatment protocol. This is particularly the case of Epidermal Growth Factor Receptor inhibitors (EGFRi) targeting carcinomas. Since the EGFR pathway is pivotal for epidermal keratinocytes, it is reasonable to hypothesize that EGFRi also affect these cells and therefore interfere with the epidermal structure formation and skin barrier function. Methods To test this hypothesis, the effects of EGFRi and Vascular Endothelial Growth Factor Receptor inhibitors (VEGFRi) at therapeutically relevant concentrations (3, 10, 30, 100 nM) were assessed on proliferation and differentiation markers of human keratinocytes in a novel 3D micro-epidermis tissue culture model. Results EGFRi directly affect basal keratinocyte growth, leading to tissue size reduction and switching keratinocytes from a proliferative to a differentiative phenotype, as evidenced by decreased Ki67 staining and increased filaggrin, desmoglein-1 and involucrin expression compared to control. These effects lead to skin barrier impairment, which can be observed in a reconstructed human epidermis model showing a decrease in trans-epidermal water loss rates. On the other hand, pan-kinase inhibitors mainly targeting VEGFR barely affect keratinocyte differentiation and rather promote a proliferative phenotype. Conclusions This study contributes to the mechanistic understanding of the clinically observed CADR during therapy with EGFRi. These in vitro results suggest a specific mode of action of EGFRi by directly affecting keratinocyte growth and barrier function.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2153
Author(s):  
Raffaella Marina Lecci ◽  
Isabella D’Antuono ◽  
Angela Cardinali ◽  
Antonella Garbetta ◽  
Vito Linsalata ◽  
...  

A wide variety of polyphenols are reported to have considerable antioxidant and skin photoprotective effects, although the mechanisms of action are not fully known. Environmentally friendly and inexpensive sources of natural bioactive compounds, such as olive mill wastewater (OMWW), the by-product of olive-oil processing, can be considered an economic source of bioactive polyphenols, with a range of biological activities, useful as chemotherapeutic or cosmeceutical agents. Green strategies, such as the process based on membrane technologies, allow to recover active polyphenols from this complex matrix. This study aims to evaluate the antioxidant, pro-oxidant, and photoprotective effects, including the underlying action mechanism(s), of the ultra-filtered (UF) OMWW fractions, in order to substantiate their use as natural cosmeceutical ingredient. Six chemically characterized UF-OMWW fractions, from Italian and Greek olive cultivar processing, were investigated for their antioxidant activities, measured by Trolox Equivalent Antioxidant Capacity (TEAC), LDL oxidation inhibition, and ROS-quenching ability in UVA-irradiated HEKa (Human Epidermal Keratinocytes adult) cultures. The photoprotective properties of UF-OMWW were assayed as a pro-oxidant-mediated pro-apoptotic effect on the UVA-damaged HEKa cells, which can be potentially involved in the carcinogenesis process. All the UF-OMWW fractions exerted an effective antioxidant activity in vitro and in cells when administered together with UV-radiation on HEKa. A pro-oxidative and pro-apoptotic effect on the UVA-damaged HEKa cells were observed, suggesting some protective actions of polyphenol fraction on keratinocyte cell cultures.


2017 ◽  
Vol 41 (2) ◽  
pp. 623-634 ◽  
Author(s):  
Yong-Tao Xiao ◽  
Wei-Hui Yan ◽  
Yi Cao ◽  
Jun-Kai Yan ◽  
Wei Cai

Background & Aims: Our previous studies have provided evidence that p38 mitogen-activated protein kinase (MAPK) is involved in total parenteral nutrition (TPN)-associated complications, but its exact effects and mechanisms have not been fully understood. This study aimed to evaluate the roles of p38 MAPK inhibitor SB203580 in the TPN-induced loss of intestinal barrier function and liver disease. Methods: A rodent model of TPN was used to analyze the roles of SB203580 in TPN-associated complications.Intestinal barrier function was evaluated by transepithelial electrical resistance (TER) and paracellular permeability in Caco-2 cells. The palmitic acid (PA) was used to induce hepatic lipoapoptosis in vitro. The lipoapoptosis was detected using Caspase-3/7 and lipid staining. Results: In the present study, we showed that SB203580 treatment significantly suppressed TPN-mediated intestinal permeability in rats. SB203580 treatment significantly inhibited IL-1β-induced an increase in tight junction permeability of Caco-2 cells via repressing the p38/ATF-2 signaling. Unexpectedly, SB203580 treatment enhanced hepatic lipoapoptosis in the model of TPN. Palmitic acid (PA)-induced hepatic lipoapoptosis in human liver cells was significantly augmented by the SB203580 treatment. Conclusions: We demonstrate that the p38 MAPK inhibitor SB203508 ameliorates intestinal barrier function but promotes hepatic lipoapoptosis in model of TPN.


2000 ◽  
Vol 11 (2) ◽  
pp. 453-466 ◽  
Author(s):  
Laurence Levy ◽  
Simon Broad ◽  
Dagmar Diekmann ◽  
Richard D. Evans ◽  
Fiona M. Watt

In keratinocytes, the β1 integrins mediate adhesion to the extracellular matrix and also regulate the initiation of terminal differentiation. To explore the relationship between these functions, we stably infected primary human epidermal keratinocytes and an undifferentiated squamous cell carcinoma line, SCC4, with retroviruses encoding wild-type and mutant chick β1 integrin subunits. We examined the ability of adhesion-blocking chick β1-specific antibodies to inhibit suspension-induced terminal differentiation of primary human keratinocytes and the ability of the chick β1 subunit to promote spontaneous differentiation of SCC4. A D154A point mutant clustered in focal adhesions but was inactive in the differentiation assays, showing that differentiation regulation required a functional ligand-binding domain. The signal transduced by β1 integrins in normal keratinocytes was “do not differentiate” (transduced by ligand-occupied receptors) as opposed to “do differentiate” (transduced by unoccupied receptors), and the signal depended on the absolute number, rather than on the proportion, of occupied receptors. Single and double point mutations in cyto-2 and -3, the NPXY motifs, prevented focal adhesion targeting without inhibiting differentiation control. However, deletions in the proximal part of the cytoplasmic domain, affecting cyto-1, abolished the differentiation-regulatory ability of the β1 subunit. We conclude that distinct signaling pathways are involved in β1 integrin–mediated adhesion and differentiation control in keratinocytes.


2009 ◽  
Vol 296 (1) ◽  
pp. C162-C172 ◽  
Author(s):  
Enno Schmidt ◽  
Judith Gutberlet ◽  
Daniela Siegmund ◽  
Daniela Berg ◽  
Harald Wajant ◽  
...  

The autoimmune blistering skin disease pemphigus vulgaris (PV) is caused primarily by autoantibodies against desmosomal cadherins. It was reported that apoptosis can be detected in pemphigus skin lesions and that apoptosis can be induced by PV-IgG in cultured keratinocytes. However, the role of apoptosis in PV pathogenesis is unclear at present. In this study, we provide evidence that apoptosis is not required for acantholysis in PV. In skin lesions from two PV patients, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) positivity, but not cleaved caspase-3, was detected in single keratinocytes in some lesions but was completely absent in other lesions from the same patients. In cultures of human keratinocytes (HaCaT and normal human epidermal keratinocytes), PV-IgG from three different PV patients caused acantholysis, fragmented staining of Dsg 3 staining, and cytokeratin retraction in the absence of nuclear fragmentation, TUNEL positivity, and caspase-3 cleavage and hence in the absence of detectable apoptosis. To further rule out the contribution of apoptotic mechanisms, we used two different approaches that are effective to block apoptosis induced by various stimuli. Inhibition of caspases by z-VAD-fmk as well as overexpression of Fas-associated death domain-like interleukin-1β-converting enzyme (FLICE)-like inhibitory proteins FLIPL and FLIPS to inhibit receptor-mediated apoptosis did not block PV-IgG-induced effects, indicating that apoptosis was not required. Taken together, we conclude that apoptosis is not a prerequisite for skin blistering in PV but may occur secondary to acantholysis.


2022 ◽  
Vol 15 (1) ◽  
pp. 84
Author(s):  
Mario Abate ◽  
Cristina Pagano ◽  
Milena Masullo ◽  
Marianna Citro ◽  
Simona Pisanti ◽  
...  

The fruit of Garcinia mangostana (mangosteen) is known in ancient traditional Asian medicine for its antioxidant, anti-inflammatory, immunomodulatory and anticancer activities. These effects are mainly due to the action of polyphenols known as xanthones, which are contained in the pericarp of the fruit. In recent years, there has been a growing interest from pharmaceutical companies in formulating new topicals based on mangosteen full extracts to prevent skin aging. However, the molecules responsible for these effects and the mechanisms involved have not been investigated so far. Here, the arils and shells of Garcinia mangostana were extracted with chloroform and methanol, and the extracts were further purified to yield 12 xanthone derivatives. Their effects were evaluated using in vitro cultures of human epidermal keratinocytes. After confirming the absence of cytotoxicity, we evaluated the antioxidant potential of these compounds, identifying mangostanin as capable of both protecting and restoring oxidative damage induced by H2O2. We showed how mangostanin, by reducing the generation of intracellular reactive oxygen species (ROS), prevents the activation of AKT (protein kinase B), ERK (extracellular signal-regulated kinase), p53, and other cellular pathways underlying cell damage and apoptosis activation. In conclusion, our study is the first to demonstrate that mangostanin is effective in protecting the skin from the action of free radicals, thus preventing skin aging, confirming a potential toward its development in the nutraceutical and cosmeceutical fields.


Sign in / Sign up

Export Citation Format

Share Document