Inhibition of brain-type glycogen phosphorylase ameliorates high glucose-induced cardiomyocyte apoptosis via Akt–HIF-1α activation

2020 ◽  
Vol 98 (4) ◽  
pp. 458-465 ◽  
Author(s):  
Xuehan Wu ◽  
Weilu Huang ◽  
Minxue Quan ◽  
Yongqi Chen ◽  
Jiaxin Tu ◽  
...  

Brain-type glycogen phosphorylase (pygb) is one of the rate-limiting enzymes in glycogenolysis that plays a crucial role in the pathogenesis of type 2 diabetes mellitus. Here we investigated the role of pygb in high-glucose (HG)-induced cardiomyocyte apoptosis and explored the underlying mechanisms, by using the specific pygb inhibitors or pygb siRNA. Our results show that inhibition of pygb significantly attenuates cell apoptosis and oxidative stress induced by HG in H9c2 cardiomyocytes. Inhibition of pygb improved glucose metabolism in cardiacmyocytes, as evidenced by increased glycogen content, glucose consumption, and glucose transport. Mechanistically, pygb inhibition activates the Akt–GSK-3β signaling pathway and suppresses the activation of NF-κB in H9c2 cells exposed to HG. Additionally, pygb inhibition promotes the expression and the translocation of hypoxia-inducible factor-1α (HIF-1α) after HG stimulation. However, the changes in glucose metabolism and HIF-1α activation mediated by pygb inhibition are significantly reversed in the presence of the Akt inhibitor MK2206. In conclusion, this study found that inhibition of pygb prevents HG-induced cardiomyocyte apoptosis via activation of Akt–HIF-α.

2009 ◽  
Vol 296 (6) ◽  
pp. E1275-E1280 ◽  
Author(s):  
Jun Yin ◽  
Aamir Zuberi ◽  
Zhanguo Gao ◽  
Dong Liu ◽  
Zhijun Liu ◽  
...  

The extract of plant Shilianhua (SLH; Sinocrassula indica Berge) is a component in a commercial product for control of blood glucose. However, it remains to be investigated whether the SLH extract enhances insulin sensitivity in a model of type 2 diabetes. To address this question, the SLH crude extract was fractionated into four parts on the basis of polarity, and bioactivities of each part were tested in cells. One of the fractions, F100, exhibited a strong activity in the stimulation of glucose consumption in vitro. Glucose consumption was induced significantly by F100 in 3T3-L1 adipocytes, L6 myotubes, and H4IIE hepatocytes in the absence of insulin. F100 also increased insulin-stimulated glucose consumption in L6 myotubes and H4IIE hepatocytes. It increased insulin-independent glucose uptake in 3T3-L1 adipocytes and insulin-dependent glucose uptake in L6 cells. The glucose transporter-1 (GLUT1) protein was induced in 3T3-L1 cells, and the GLUT4 protein was induced in L6 cells by F100. Mechanism study indicated that F100 induced GSK-3β phosphorylation, which was comparable with that induced by insulin. Additionally, the transcriptional activity of NF-κB was inhibited by F100. In RAW 264.7 macrophages, mRNA expression of NF-κB target genes (TNFα and MCP-1) was suppressed by F100. In KK.Cg-Ay/+ mice, F100 decreased fasting insulin and blood glucose and improved insulin tolerance significantly. We conclude that the F100 may be a bioactive component in the SLH plant. It promotes glucose metabolism in vitro and in vivo. Inhibition of GSK-3β and NF-κB may be the potential mechanism.


1997 ◽  
Vol 272 (6) ◽  
pp. G1530-G1539 ◽  
Author(s):  
C. Cherbuy ◽  
B. Darcy-Vrillon ◽  
L. Posho ◽  
P. Vaugelade ◽  
M. T. Morel ◽  
...  

We have reported previously that a high glycolytic capacity develops soon after birth in enterocytes isolated from suckling newborn pigs. In the present work, we investigated whether such metabolic changes could affect intestinal glucose utilization in vivo and examined possible variations in glucose metabolism along the small intestine. Glucose utilization by individual tissues was assessed using the 2-deoxyglucose technique. The overall glucose utilization rate was doubled in suckling vs. fasting 2-day-old pigs because of significantly higher rates in all tissues studied, except for the brain. In parallel, enterocytes were isolated from the proximal, medium, or distal jejunoileum of newborn vs. 2-day-old pigs and assessed for their capacity to utilize, transport, and phosphorylate glucose. Intestinal glucose consumption accounted for approximately 15% of glucose turnover rate in suckling vs. 8% in fasting pigs. Moreover, there was a proximal-to-distal gradient of glucose utilization in the intestinal mucosa of suckling pigs. Such a gradient was also evidenced on isolated enterocytes. The stimulation of both hexokinase activity (HK2 isoform) and basolateral glucose transporter (GLUT2), as observed in the proximal jejunum, could account for such a site-specific effect of suckling.


Author(s):  
Jay F Storz

AbstractPopulation genomic analyses of high-altitude humans and other vertebrates have identified numerous candidate genes for hypoxia adaptation, and the physiological pathways implicated by such analyses suggest testable hypotheses about underlying mechanisms. Studies of highland natives that integrate genomic data with experimental measures of physiological performance capacities and subordinate traits are revealing associations between genotypes (e.g., hypoxia-inducible factor gene variants) and hypoxia-responsive phenotypes. The subsequent search for causal mechanisms is complicated by the fact that observed genotypic associations with hypoxia-induced phenotypes may reflect second-order consequences of selection-mediated changes in other (unmeasured) traits that are coupled with the focal trait via feedback regulation. Manipulative experiments to decipher circuits of feedback control and patterns of phenotypic integration can help identify causal relationships that underlie observed genotype–phenotype associations. Such experiments are critical for correct inferences about phenotypic targets of selection and mechanisms of adaptation.


2021 ◽  
pp. 0271678X2098150
Author(s):  
June van Aalst ◽  
Jenny Ceccarini ◽  
Stefan Sunaert ◽  
Patrick Dupont ◽  
Michel Koole ◽  
...  

Preclinical and postmortem studies have suggested that regional synaptic density and glucose consumption (CMRGlc) are strongly related. However, the relation between synaptic density and cerebral glucose metabolism in the human brain has not directly been assessed in vivo. Using [11C]UCB-J binding to synaptic vesicle glycoprotein 2 A (SV2A) as indicator for synaptic density and [18F]FDG for measuring cerebral glucose consumption, we studied twenty healthy female subjects (age 29.6 ± 9.9 yrs) who underwent a single-day dual-tracer protocol (GE Signa PET-MR). Global measures of absolute and relative CMRGlc and specific binding of [11C]UCB-J were indeed highly significantly correlated ( r > 0.47, p < 0.001). However, regional differences in relative [18F]FDG and [11C]UCB-J uptake were observed, with up to 19% higher [11C]UCB-J uptake in the medial temporal lobe (MTL) and up to 17% higher glucose metabolism in frontal and motor-related areas and thalamus. This pattern has a considerable overlap with the brain regions showing different levels of aerobic glycolysis. Regionally varying energy demands of inhibitory and excitatory synapses at rest may also contribute to this difference. Being unaffected by astroglial and/or microglial energy demands, changes in synaptic density in the MTL may therefore be more sensitive to early detection of pathological conditions compared to changes in glucose metabolism.


Author(s):  
Fang Zhao ◽  
Bo Li ◽  
Yin-zhi Wei ◽  
Bin Zhou ◽  
Han Wang ◽  
...  

2007 ◽  
Vol 193 (3) ◽  
pp. 367-381 ◽  
Author(s):  
Anthony J Weinhaus ◽  
Laurence E Stout ◽  
Nicholas V Bhagroo ◽  
T Clark Brelje ◽  
Robert L Sorenson

Glucokinase activity is increased in pancreatic islets during pregnancy and in vitro by prolactin (PRL). The underlying mechanisms that lead to increased glucokinase have not been resolved. Since glucose itself regulates glucokinase activity in β-cells, it was unclear whether the lactogen effects are direct or occur through changes in glucose metabolism. To clarify the roles of glucose metabolism in this process, we examined the interactions between glucose and PRL on glucose metabolism, insulin secretion, and glucokinase expression in insulin 1 (INS-1) cells and rat islets. Although the PRL-induced changes were more pronounced after culture at higher glucose concentrations, an increase in glucose metabolism, insulin secretion, and glucokinase expression occurred even in the absence of glucose. The presence of comparable levels of insulin secretion at similar rates of glucose metabolism from both control and PRL-treated INS-1 cells suggests the PRL-induced increase in glucose metabolism is responsible for the increase in insulin secretion. Similarly, increases in other known PRL responsive genes (e.g. the PRL receptor, glucose transporter-2, and insulin) were also detected after culture without glucose. We show that the upstream glucokinase promoter contains multiple STAT5 binding sequences with increased binding in response to PRL. Corresponding increases in glucokinase mRNA and protein synthesis were also detected. This suggests the PRL-induced increase in glucokinase mRNA and its translation are sufficient to account for the elevated glucokinase activity in β-cells with lactogens. Importantly, the increase in islet glucokinase observed with PRL is in line with that observed in islets during pregnancy.


2018 ◽  
Vol 115 (43) ◽  
pp. E10187-E10196 ◽  
Author(s):  
Michael A. van der Kooij ◽  
Tanja Jene ◽  
Giulia Treccani ◽  
Isabelle Miederer ◽  
Annika Hasch ◽  
...  

Stringent glucose demands render the brain susceptible to disturbances in the supply of this main source of energy, and chronic stress may constitute such a disruption. However, whether stress-associated cognitive impairments may arise from disturbed glucose regulation remains unclear. Here we show that chronic social defeat (CSD) stress in adult male mice induces hyperglycemia and directly affects spatial memory performance. Stressed mice developed hyperglycemia and impaired glucose metabolism peripherally as well as in the brain (demonstrated by PET and induced metabolic bioluminescence imaging), which was accompanied by hippocampus-related spatial memory impairments. Importantly, the cognitive and metabolic phenotype pertained to a subset of stressed mice and could be linked to early hyperglycemia 2 days post-CSD. Based on this criterion, ∼40% of the stressed mice had a high-glucose (glucose >150 mg/dL), stress-susceptible phenotype. The relevance of this biomarker emerges from the effects of the glucose-lowering sodium glucose cotransporter 2 inhibitor empagliflozin, because upon dietary treatment, mice identified as having high glucose demonstrated restored spatial memory and normalized glucose metabolism. Conversely, reducing glucose levels by empagliflozin in mice that did not display stress-induced hyperglycemia (resilient mice) impaired their default-intact spatial memory performance. We conclude that hyperglycemia developing early after chronic stress threatens long-term glucose homeostasis and causes spatial memory dysfunction. Our findings may explain the comorbidity between stress-related and metabolic disorders, such as depression and diabetes, and suggest that cognitive impairments in both types of disorders could originate from excessive cerebral glucose accumulation.


Sign in / Sign up

Export Citation Format

Share Document