scholarly journals Predicting the resistance profile of a spudcan penetrating sand overlying clay

2014 ◽  
Vol 51 (10) ◽  
pp. 1151-1164 ◽  
Author(s):  
Pan Hu ◽  
Dong Wang ◽  
Mark J. Cassidy ◽  
Sam A. Stanier

Assessment of the risk of punch-through failure of spudcan foundations on sand overlying clay requires prediction of the full penetration resistance profile, from touchdown and through punch-through to equilibrium of the vertical resistance at depth in the underlying clay layer. This study uses the Coupled Eulerian–Lagrangian approach, a large deformation finite element analysis method, to model the complete penetration resistance profile of a spudcan on sand overlying clay. The sand is modeled using the Mohr–Coulomb model, while the clay is modeled using a modified Tresca model to account for strain softening. The numerical method is then used to simulate a series of spudcan penetration tests, performed in a geotechnical centrifuge, on medium dense sand overlying clay. The punch-through behavior observed in the experiments is replicated, and the penetration resistance profiles from numerical analyses are generally a reasonable match to the experimental measurements. The influences of the sand layer height to foundation diameter ratio, sand–clay interface shear strength, and strength gradient in clay on the penetration resistance profiles are explored in a complementary parametric study. The penetration resistance in the underlying clay layer is well predicted using a simple linear expression for the bearing capacity factor for the spudcan and underlying sand plug. This expression is combined with an existing failure stress dependent model for predicting peak resistance to form a simplified method for prediction of the full penetration resistance profile. This new method provides estimates of the vertical penetration that the spudcan will run during the punch-through event. It is validated against both medium dense and dense sand centrifuge tests.

Author(s):  
Hocine Haouari ◽  
Ali Bouafia

Centrifuge modelling and finite element analysis are powerful tools of research on the lateral pile/soil interaction. This paper aims at presenting the main results of experimental and numerical analysis of the pile response under monotonic lateral loading in sand. After description of the experimental devices, it focuses on the determination of the load-transfer P-Y curves for rigid and semi-rigid piles embedded in dry dense sand by using the experimental bending moment profiles obtained in centrifuge tests, as well as by a three-dimensional finite element models using ABAQUS Software. The elastic perfectly plastic Mohr-Coulomb constitutive model has been used to describe the soil response, and the surface-to-surface contact method of ABAQUS software has been used to take into account the nonlinear response at soil/pile interface. The analysis methodology has allowed to propose a hyperbolic function as a model to construct P-Y curves for rigid and semi-rigid piles embedded in dry dense sand, this model is governed by two main parameters, which are the initial subgrade reaction modulus, and the lateral soil resistance, the latter has been formulated in terms of Rankine’s passive earth pressure coefficient, the sand dry unit weight, and the pile diameter.


2020 ◽  
Vol 27 (4) ◽  
pp. 130-138
Author(s):  
Pan Gao ◽  
Zhihui Liu ◽  
Ji Zeng ◽  
Yiting Zhan ◽  
Fei Wang

AbstractPunch-through is a major threat to the jack-up unit, especially at well sites with layered stiff-over-soft clays. A model is proposed to predict the spudcan penetration resistance in stiff-over-soft clays, based on the random forest (RF) method. The RF model was trained and tested with numerical simulation results obtained through the Finite Element model, implemented with the Coupled Eulerian Lagrangian (CEL) approach. With the proposed CEL model, the effects of the stiff layer thickness, undrained shear strength ratio, and the undrained shear strength of the soft layer on the bearing characteristics, as well as the soil failure mechanism, were numerically studied. A simplified resistance profile model of penetration in stiff-over-soft clays is proposed, divided into three sections by the peak point and the transition point. The importance of soil parameters to the penetration resistance was analysed. Then, the trained RF model was tested against the test set, showing a good prediction of the numerical cases. Finally, the trained RF was validated against centrifuge tests. The RF model successfully captured the punch-through potential, and was verified using data recorded in the field, showing advantages over the SNAME guideline. It is supposed that the trained RF model should give a good prediction of the spudcan penetration resistance profile, especially if trained with more field data.


Author(s):  
Kenton Pike ◽  
Andrew Blundon

As offshore oil and gas fields mature on the Grand Banks, offshore Newfoundland and Labrador, marginal field subsea tie-backs are necessary to maintain production levels. Existing untrenched flowline lengths have been limited by the assumption that iceberg contact equates to flowline failure. However, extended tie-backs will be necessary to develop stranded resources. To potentially reduce the number of failure cases, we can consider a better definition of failure that accounts for the pipeline response due to iceberg-soil-pipeline interaction events. Reducing the failure rate from free-floating iceberg contacts alone can significantly increase safe tie-back lengths. This paper examines the flowline response from impacts with free-floating icebergs using large deformation finite element analysis. The plane strain pipe-soil interaction response is first simulated for pure vertical loading and compared against analytical bearing capacity theory. The influence of non-associativity in the soil constitutive model is demonstrated with respect to predicting the pipe drained penetration resistance in dense sands. Oblique vertical-horizontal plane strain pipe-soil interaction is also investigated, and it is shown that the vertical penetration resistance is reduced when the pipe trajectory deviates from pure vertical, consistent with published interaction diagrams. Lastly, the fully coupled interaction scenario of free-floating iceberg-pipe-soil interaction is simulated, showing the effects of the pipe wall thickness and soil strength. The numerical modelling procedures are described and the soil constitutive model that incorporates dense sand behavior is detailed.


2021 ◽  
Vol 9 (7) ◽  
pp. 689
Author(s):  
Jingbin Zheng ◽  
Shaoqing Zhang ◽  
Dong Wang ◽  
Jun Jiang

Clay–sand–clay deposits are commonly encountered in the offshore field. For spudcan installation in this soil stratigraphy, the potential for punch-through exists, with the peak penetration resistance formed within the interbedded sand layer. Therefore, a careful assessment of the penetration resistance profile has to be performed. Based on the recently proposed failure-stress-dependent model, this paper presents a modified predictive model for estimating the peak resistance. The modified model incorporates the bearing capacity depth factor and the protruded soil plug in the bottom clay layer into the formulation. It is proven that the modified predictive model provides improved deterministic estimations for the peak resistances measured in centrifuge tests. Based on the modified predictive model, a parameter optimization technique is utilized to optimize the prediction of peak resistance using penetration resistances observed beforehand. A detailed application procedure is proposed and applied to the centrifuge tests accumulated from existing publications, with further improvement on the predictions demonstrated. The proposed parameter optimization procedure combined with the modified predictive model provides an approach to perform real-time optimization for assessing spudcan peak resistance in clay–sand–clay deposits.


Author(s):  
Jun Zhao ◽  
Futai Sun ◽  
Wenbo Jin

Abstract In the dense sand-over-clay strata, there is a potential for an installing spudcan to experience a sudden uncontrolled punch-through failure. Such a punch-through failure would seriously threaten safety of the rig structure, even cause casualties. To estimate the potential spudcan punch-through failure, this paper presents a simplified numerical method to calculate the full load-penetration resistance profile. The present approach allows the progressive failure of the overlying dense sand to be properly simulated by using an extended Mohr-Coulomb model. A series of large deformation finite-element (LDFE) analyses are carried out, varying the strength parameters. A fairly good performance of the present approach is verified by validating against groups of centrifuge tests data. Additionally, comparisons with the typical existing LDFE analyses in which both the simple and sophisticated constitutive models are conducted, show that the present approach performs fairly well to calculate the penetration resistance of a spudcan on dense sand overlying clay.


2017 ◽  
Vol 54 (8) ◽  
pp. 1071-1088 ◽  
Author(s):  
Shah Neyamat Ullah ◽  
Yuxia Hu

The presence of a thin soft clay layer inside a bed of sand may significantly reduce the bearing capacity of the sand layer, imposing a risk of punch-through failure. In this paper, finite element (FE) simulations are reported using a hardening soil (HS) model for sand. The FE model has been verified against centrifuge tests involving loose and dense sand layers overlying clay soil. The effects of sand stiffness, foundation roughness, sand friction angle, undrained clay strength, clay strength nonhomogeneity, and sand and clay layer geometries on the foundation peak capacities have been studied. Punch-through failure is initiated with an inclined sand plug being sheared and pushed into the underlying soft clay. During punch-through, the clay layer fails due to significant radial squeezing. Existing analytical models do not capture the combined failure mechanism of sand shearing and clay radial squeezing. A new analytical model is developed to estimate the peak punch-through capacity of a spudcan in sand with an interbedded clay layer, showing improved performance over the current industry guidelines.


Author(s):  
Gopal S. P. Madabhushi ◽  
Samy Garcia-Torres

AbstractSoil liquefaction can cause excessive damage to structures as witnessed in many recent earthquakes. The damage to small/medium-sized buildings can lead to excessive death toll and economic losses due to the sheer number of such buildings. Economic and sustainable methods to mitigate liquefaction damage to such buildings are therefore required. In this paper, the use of rubble brick as a material to construct earthquake drains is proposed. The efficacy of these drains to mitigate liquefaction effects was investigated, for the first time to include the effects of the foundations of a structure by using dynamic centrifuge testing. It will be shown that performance of the foundation in terms of its settlement was improved by the rubble brick drains by directly comparing them to the foundation on unimproved, liquefiable ground. The dynamic response in terms of horizontal accelerations and rotations will be compared. The dynamic centrifuge tests also yielded valuable information with regard to the excess pore pressure variation below the foundations both spatially and temporally. Differences of excess pore pressures between the improved and unimproved ground will be compared. Finally, a simplified 3D finite element analysis will be introduced that will be shown to satisfactorily capture the settlement characteristics of the foundation located on liquefiable soil with earthquake drains.


2021 ◽  
Vol 318 ◽  
pp. 01010
Author(s):  
Mais S. Al-Tememy ◽  
Mohammed A. Al-Neami ◽  
Mohammed F. Asswad

Batter or raker piles are piles driven at an inclination with a vertical to resist large inclined or lateral forces. Many structures like offshore structures and towers are subjected to overturning moments due to wave pressure, wind load, and ship impacts. Therefore in such structures, a combination of the vertical and batter piles is used to transfer overturning moments in compression and tension forces to the foundation. This paper presents a three-dimensional finite element analysis using PLAXIS 3D software to study the battered pile's behavior under the effect of pullout load. Several variables that influence the pile tension capacity embedded in sandy soil are investigated. The pile models are steel piles embedded in the dense sand at different batter angles (0, 10, 20, and 30) degrees with two embedment ratios, L/d (15 and 20). To clarify the pile shape's influence on a pullout capacity, two shapes are used, a circular pile with a diameter equal to 20 mm and a square pile with a section of 15.7×15.7 mm. These dimensions are chosen to achieve an equal perimeter for both shapes. The numerical results pointed that the pile pullout capacity increases with the increasing of the batter angle and embedment ratio, and the maximum values are marked at a batter angle of 20o. The shape of the bending moment profile is a single curvature, and the peak values are located approximately at the midpoint of the battered pile, while a zero value is located at the pile tip and pile head.


2021 ◽  
Vol 7 (4) ◽  
pp. 730-746
Author(s):  
Amanpreet Kaur ◽  
Harvinder Singh ◽  
J. N. Jha

This paper presents the results of three dimensional finite element analysis of laterally loaded pile groups of configuration 1×1, 2×1 and 3×1, embedded in two-layered soil consisting of soft clay at liquid limit overlying dense sand using Plaxis 3D. Effects of variation in pile length (L) and clay layer thickness (h) on lateral capacity and bending moment profile of pile foundations were evaluated by employing different values of pile length to diameter ratio (L/D) and ratio of clay layer thickness to pile length (h/L) in the analysis. Obtained results indicated that the lateral capacity reduces non-linearly with increase in clay layer thickness. Larger decrease was observed in group piles. A non-dimensional parameter Fx ratio was defined to compare lateral capacity in layered soil to that in dense sand, for which a generalized expression was derived in terms of h/L ratio and number of piles in a group. Group effect on lateral resistance and maximum bending moment was observed to become insignificant for clay layer thickness exceeding 40% of pile length. For a fixed value of clay layer thickness, lateral capacity and bending moment in a single pile increased significantly with increase in pile length only up to an optimum embedment depth in sand layer which was found to be equal to three times pile diameter and 0.21 times pile length for pile with L/D 15. Scale effect on lateral capacity has also been studied and discussed. Doi: 10.28991/cej-2021-03091686 Full Text: PDF


Sign in / Sign up

Export Citation Format

Share Document