Determining the virgin compression lines of reconstituted clays at different initial water contents

2015 ◽  
Vol 52 (9) ◽  
pp. 1408-1415 ◽  
Author(s):  
Ling-Ling Zeng ◽  
Zhen-Shun Hong ◽  
Yu-Jun Cui

Forty-eight consolidometer tests were performed on various natural clays and a kaolinite clay reconstituted in the laboratory at different initial water contents using a modified consolidometer apparatus. These data together with those published previously allow a multi-regression analysis for the development of an approach for determining the intrinsic compression parameters that depend on initial water content and liquid limit. The approach proposed by Burland can be thereby extended to provide an expression describing the compression response of a wide range of clays. Based on the intrinsic concept, a simple way of determining the virgin compression lines of reconstituted clays is also proposed using the density of soil particles, initial water content, and liquid limit.

2011 ◽  
Vol 261-263 ◽  
pp. 1650-1654 ◽  
Author(s):  
Feng Ji ◽  
Jian Wen Ding ◽  
Zhen Shun Hong ◽  
Yue Gui

A series of model tests were performed on dredged clay with high initial water contents for investigating the dewatering behavior by ventilating vacuum method (VVM). The results shows that the surface water separated from dredged clay can be quickly removed by VVM in which a new pattern PVD is used. In addition, the method also speeds up the deposition of dredged clay. The volume of dredged clay with an initial water content of 4.5 times liquid limit decreases by 50 percent within two months. This paper also investigated the spatial distribution law of water content by TDR method. It is found that the drainage distance of PVD is about 0.3-0.4m.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Sen Qian ◽  
Jian Shi ◽  
Jian-wen Ding

The initial water content has a significant effect on the compression behaviour of reconstituted clays. This effect has to be considered in the Liu-Carter model to ensure the addition voids ratio only related to soil structure. A modified Liu-Carter compression model is proposed by introducing the empirical equations for reconstituted clays at different initial water contents into the Liu-Carter model. The proposed model is verified against the experimental results from the literature. The simulations by the proposed method are also compared with that by old method where the influence of initial water content is not considered. The results show that the predicted virgin compression curves of natural clays are similar, but the values ofbandΔeymay be very different.


2000 ◽  
Vol 37 (3) ◽  
pp. 712-722 ◽  
Author(s):  
A Sridharan ◽  
H B Nagaraj

Correlating engineering properties with index properties has assumed greater significance in the recent past in the field of geotechnical engineering. Although attempts have been made in the past to correlate compressibility with various index properties individually, all the properties affecting compressibility behaviour have not been considered together in any single study to examine which index property of the soil correlates best with compressibility behaviour, especially within a set of test results. In the present study, 10 soils covering a sufficiently wide range of liquid limit, plastic limit, and shrinkage limit were selected and conventional consolidation tests were carried out starting with their initial water contents almost equal to their respective liquid limits. The compressibility behaviour is vastly different for pairs of soils having nearly the same liquid limit, but different plasticity characteristics. The relationship between void ratio and consolidation pressure is more closely related to the shrinkage index (shrinkage index = liquid limit - shrinkage limit) than to the plasticity index. Wide variations are seen with the liquid limit. For the soils investigated, the compression index relates better with the shrinkage index than with the plasticity index or liquid limit.Key words: Atterberg limits, classification, clays, compressibility, laboratory tests.


2021 ◽  
Vol 16 (4) ◽  
pp. 275-293
Author(s):  
Takashi TSUCHIDA ◽  
Erika YAMASHITA ◽  
Ryota HASHIMOTO ◽  
Arlyn Aristo CKMIT

2021 ◽  
Vol 58 (1) ◽  
pp. 142-146
Author(s):  
N.F. Zhao ◽  
W.M. Ye ◽  
Q. Wang ◽  
B. Chen ◽  
Y.-J. Cui

This paper presents an experimental study on the influence of initial water content on unsaturated shear strength of compacted bentonite. Isotropic loading and triaxial shear tests were conducted on compacted GaoMiaoZi (GMZ) bentonite specimens with different initial water contents. Isotropic loading test and triaxial shear test results show that the compression index increases and yield stress decreases with increasing water content, while the swelling index stays constant. For normally consolidated and lightly overconsolidated bentonite, unsaturated shear strength can be described by the critical state line. For highly overconsolidated bentonite, unsaturated shear strength can be described by the Hvorslev surface. The critical state line and Hvorslev surface are found to be linear for the specimens with different water contents. The critical state stress ratio and the Hvorslev surface parameters are found to decrease with an increase in water content of the bentonite studied.


2020 ◽  
Vol 57 (3) ◽  
pp. 408-422 ◽  
Author(s):  
Khoa M. Tran ◽  
Ha H. Bui ◽  
Jayantha Kodikara ◽  
Marcelo Sánchez

Soil curling is a common phenomenon in nature due to the rearrangement of soil particles caused by moisture loss. The occurrence of curling in soils significantly affects soil performance in various disciplines. Despite its importance, most existing studies describe the soil curling process within the context of soil desiccation cracking, where boundary conditions facilitating soil curling are not well controlled, or often use the final stage of the desiccation process to infer the soil curling behaviour. Consequently, the underlying soil curling mechanism, the state of the curled soil, and the influencing factors (i.e., clay type, drying temperature, initial water content, and sand content) are not fully understood. In this study, soil curling tests were conducted to study the above-mentioned issues in different types of soils under well-controlled boundary and environmental conditions. It was found that natural clays consisting of higher portions of smectite underwent both upward curling (concave-up) and downward curling (convex-up), while artificial clay experienced only concave-up curling. Concave-up curling initiated when the samples were almost in the saturated condition, while convex-up curling started when the water content of samples was close to their plastic limits. The influencing factors had a profound effect on the moisture evaporation and thus on the soil curling state and its lift-off height. Finally, a conceptual model isproposed to explain the soil curling mechanism and factors influencing soil curling.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 309
Author(s):  
Cherng-Yuan Lin ◽  
Lei Ma

Biodiesel is regarded as a significant alternative fuel to petrodiesel due to its excellent combustion features and renewable character. The water content in the reactant mixtures needs to be considered so as to retard the conversion rate and it is suggested to be kept as low as possible. The fluid characteristics of biodiesel might be affected by initial water content; however, the optimum ratio of water content added to raw oil for achieving superior fluid characteristics of biodiesel has not yet been studied. Hence, this study empirically investigated the influences of the initial water content added to raw feedstock oil on the fluid characteristics of biodiesel. The experimental results show that an adequate amount of water content in the reactant mixture was found effective for improving the transesterification reaction and, in turn, the fluid characteristics. The biodiesel made from raw oil with 0.05 wt. % water content added was observed to bear the lowest water content, acid value, and cold filter plugging point (CFPP) and, therefore, superior fluidity at low temperatures. The lower CFPP of biodiesel is attributed to its more unsaturated fatty acids and lower iodine value. In addition, the biodiesel produced from feedstock oil with 0.02 wt. % water added was observed to have the lowest iodine value but the highest kinematic viscosity. The optimum content of initial water added to palm oil for superior fluid characteristics of the biodiesel product is thus suggested to be in the range between 0.02 wt. % and 0.05 wt. %.


2014 ◽  
Vol 4 (5) ◽  
pp. 706-710
Author(s):  
C. M. Chan ◽  
H. Y. Yong

When a soil is disturbed upon remolding, it may lose part or all of its strength. As time passes, the structural arrangement of the soil particles would be restored to a stable form and the soil would regain hardness under constant volume and water content. The process is known as “thixotropic hardening”. On another note, dredged marine soils of the fine-grained type can be reused as a backfill material instead of being disposed to the open sea. The rest period required for the relocated soil to regain strength and stiffness, i.e. thixotropic hardening, needs to be estimated precisely. For this purpose, a study on the phenomena of strength and stiffness gain by a dredged marine clay was carried out. The strength and stiffness improvement with time was measured using the vane shear and fall cone tests respectively. The clay was remolded at different water contents in multiples of the soil’s liquid limit (LL), namely 0.75LL, 1.00LL and 1.25LL, in order to evaluate the effect of initial water content on thixotropic hardening. A separate series of samples were prepared with light solidification using cement, to examine the possibilities of enhancing the soil’s improvement in a shorter rest period. The results showed the dredged marine clay can potentially be used as a backfill material for reclamation works, with lower initial water content and light solidification contributing to accelerated better performance


2016 ◽  
Vol 25 (43) ◽  
pp. 97-109
Author(s):  
Juan David Montoya-Domínguez ◽  
Edwin Fabián García-Aristizábal ◽  
Carlos Alberto Vega-Posada

This paper presents experimental results obtained from silty sand slope models subjected to an artificial rainfall. Four models were constructed to evaluate the effect of initial water content and rainfall intensity on the hydraulic behavior and failure mechanisms of the slopes. The models were instrumented with volumetric water content sensors to monitor the advance of the water front, and inclinometers to measure lateral movements of the slope. The models were subjected to rainfall intensities ranging from 25 to 50 mm/h, and durations from 19 to 152 minutes. The influence of low intensity rainfall events before a high intensity rainfall is discussed herein. The results showed that the time the slope models required to reach failure was influenced by the soil initial water content, being shorter at high initial water contents. These results are useful to understand the behavior of unsaturated natural slopes and embankments exposed to rainfall infiltration, and to complement the existing laboratory database existing in this subject.


Sign in / Sign up

Export Citation Format

Share Document