Effect of high differential stress and mineral properties on deformation and failure mechanism of hard rocks

Author(s):  
Xia-Ting Feng ◽  
Jun Zhao ◽  
Zhaofeng Wang ◽  
Cheng-Xiang Yang ◽  
Qiang Han ◽  
...  

In order to study the deformation and failure mechanism of hard rocks, true triaxial compression tests were conducted on four type of hard rocks to obtain the complete stress-strain curve and failure modes. Under true triaxial compression condition, the shape of the complete stress-strain curve can be divided into three types: elastic-brittle (EB), elastic-plastic-brittle (EPB), and elastic-plastic-ductile (EPD) types. According to the different post-peak deformation behaviours, the stress-strain curves of elastic-plastic-brittle (EPB) type can be subdivided into three sub-categories: post-peak instantaneous brittle (EPB-I) type, post-peak multi-stage brittle (EPB-M) type, and post-peak delayed brittle (EPB-D) type. The stress-strain curves change from EPD to EPB-D to EPB-M to EPB-I to EB with increasing differential stress (σ2-σ3). The deformation characteristics are dependent on the σ2, σ3, mineral composition and mineral texture to the rock sample. An increase in σ3 leads to an increased ductility, while an increase in σ2 leads to an increased brittleness. Moreover, rocks with regular mineral texture and low mineral hardness are more prone to ductility. When the deformation curve is transformed from EPD to EPB to EB, the tensile crack is gradually dominant, and the macroscopic failure angle is gradually steeper.

2019 ◽  
Vol 53 (1) ◽  
pp. 103-111 ◽  
Author(s):  
Xia-Ting Feng ◽  
Rui Kong ◽  
Chengxiang Yang ◽  
Xiwei Zhang ◽  
Zhaofeng Wang ◽  
...  

2014 ◽  
Vol 580-583 ◽  
pp. 312-315
Author(s):  
Hui Mei Zhang ◽  
Xiang Miao Xie ◽  
Geng She Yang

From the feature of rock micro-unit failure obeys Poisson random distribution, the damage softening statistical constitutive of was established under true triaxial confinement based on D-P criterion, so the impact of the intermediate principal stress on rock deformation and failure was considered in theory, and the actual engineering rock complex stress path evolution was reflected more realistically. Furthermore, according to the geometrical conditions of stress-strain relationship, the theoretical relationship between constitutive model parameters and the stress-strain curve characteristic parameters during the process of rock softening and deforming, which enhance the adaptability of the model. Finally, the rationality of the model verified by the measured data.


2013 ◽  
Vol 734-737 ◽  
pp. 746-750
Author(s):  
Jun Wei Shi

According to the mechanical properties of paste filling body under special environment such as high temperature high humidity high stress and high airtight) in gob, mechanical properties of gangue-paste filling body was studied with the method of field core and laboratory test. The complete stress-strain curve of filling body under the condition of uniaxial and triaxial and the ultimate compressive strength under different confining pressure station were obtained through uniaxial and triaxial compression test. Six stages of uniaxial compression complete stress-strain curve (compression stage, elastic deformation stage, non-stable developing stages, plastic hardening stage, stress softening stage and residual deformation stage) were improved and developed. The deformation characteristics of filling body under triaxial compression were different from that under uniaxial compression. Namely the deformation of filling body under triaxial compression only appeared two deformation stages: linear deformation stage and plastic hardening stage, but had no softening stage basically under different confining pressures, which was benefit for controlling the ground subsidence and preventing the ground buildings.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7414
Author(s):  
Youliang Chen ◽  
Peng Xiao ◽  
Xi Du ◽  
Suran Wang ◽  
Zhoulin Wang ◽  
...  

Based on Lemaitre’s strain equivalence hypothesis theory, it is assumed that the strength of acid-etching rock microelements under the coupling effect of temperature and confining pressure follows the Weibull distribution. Under the hypothesis that micro-element damage meets the D-P criterion and based on continuum damage mechanics and statistical theory, chemical damage variables, thermal damage variables and mechanical damage variables were introduced in the construction of damage evolution equations and constitutive models for acid-etching rocks considering the coupled effects of temperature and confining pressure. The required model parameters were obtained by theoretical derivation, and the model was verified based on the triaxial compression test data of granite. Comparing the experimental stress-strain curve with the theoretical stress-strain curve, the results show that they were in good agreement. By selecting reasonable model parameters, the damage statistical constitutive model can accurately reflect the stress-strain curve characteristics of rock in the process of triaxial compression. The comparison between the experimental and theoretical results also verifies the reasonableness and reliability of the model. This model provides a new rock damage statistical constitutive equation for the study of rock mechanics and its application in engineering, and has certain reference significance for rock underground engineering.


2016 ◽  
Vol 12 (1) ◽  
pp. 80-92 ◽  
Author(s):  
Victor Iliev Rizov

Purpose – The purpose of this paper is to perform a theoretical analysis of non-linear delamination fracture in cantilever beam opened notch (CBON) configuration. It is assumed that the non-linear mechanical behavior of the CBON can be described by using a stress-strain curve with power-law hardening. Design/methodology/approach – The fracture analysis is carried-out by applying the integration contour independent J-integral. For this purpose, a model based on the technical beam theory is used. Equation is derived for determination of the CBON specimen curvature in elastic-plastic stage of deformation. The equation is solved by using the MatLab program system. Solutions of the J-integral are obtained at linear-elastic as well as elastic-plastic behavior of the CBON. The influence of the power-law exponent on the non-linear fracture is evaluated. Findings – The analysis reveals that the J-integral value increases when the exponent of the power-law increases. The solution obtained here is very useful for parametric analyses of the non-linear fracture behavior, since the simple formulas derived capture the essentials of the fracture response. Practical implications – Beside for parametric investigations, the solution obtained here can also be applied for calculating the critical J-integral value at non-linear behavior using experimentally determined critical fracture load at the onset of crack growth from the initial crack tip position in the CBON configuration. Originality/value – An analysis is performed of the non-linear fracture in the CBON configuration by applying the J-integral approach, assuming that the mechanical response can be modeled using a stress-strain curve with power-law hardening.


1967 ◽  
Vol 34 (1) ◽  
pp. 91-99 ◽  
Author(s):  
S. R. Bodner ◽  
R. J. Clifton

Experiments are reported involving elastic-plastic pulses due to explosive loading at one end of long, annealed, commercially pure, aluminum rods at room temperature and at elevated temperatures up to 750 deg F. The stress waves were detected by a condenser microphone at the far end of the rod and, in some cases, by strain gages at a cross section distant from the impact end. The essential features of the recorded velocity-time profiles and strain-time profiles are found to be in agreement with the predictions of rate independent elastic-plastic theory which takes a Bauschinger effect into account. At room temperature, the reference dynamic stress-strain curve does not differ appreciably from the quasi-static stress-strain curve whereas at elevated temperatures there appears to be a marked difference between the dynamic and quasi-static stress-strain curves. The experiments also serve to determine the dynamic proportional limit which is found to be fairly insensitive to temperature. Since the maximum plastic strains are small at cross sections remote from the impact end, the measurements, and consequently the conclusions, are limited to small strains beyond the proportional limit.


Sign in / Sign up

Export Citation Format

Share Document