A genome-wide case-control association study of dark cutting in beef cattle

Author(s):  
Huaigang Lei ◽  
Tianfu Yang ◽  
Shahid Mahmood ◽  
Mohammed Kotb Abo-Ismail ◽  
Bimol Roy ◽  
...  

The genetic architecture of dark cutting was investigated with case-control genome-wide association study (GWAS) on two groups of beef cattle analyzed separately and together (Combined Group). Groups I (n = 64) and II (n = 150) were genotyped using the 70K GeneSeek Genomic Profiler for Beef Cattle-HD (GGP-HD) and the 50K Illumina BovineSNP50v2 BeadChip, respectively. Dark cutting was analyzed as a binary trait (case versus control) using logistic regression in an additive model implemented in PLINK v1.9. Significant loci were not identified when correcting for multiple testing (false discovery rate) suggesting that the trait is not controlled by genes with big effects or the sample size was not large enough to detect these major genes. Regions harbouring single nucleotide polymorphisms (SNPs) with a raw p < 0.01 using 1 MB window were analyzed for gene function using the Ingenuity Pathway Analysis (IPA). For Group I, II, and the Combined Group 449, 301 and 191 SNPs were identified, respectively. Genes identified were involved in pyruvic acid modification and release, 2-deoxyglucose clearance and disposal, sucrose recognition, energy production, and metabolism of carbohydrate. Although detected SNP associations require validation in a large population, results suggested the possibility for marker-assisted or genomic selection of beef cattle to reduce dark cutting.

Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Archana Khadgi ◽  
Courtney A. Weber

Red raspberry (Rubus idaeus L.) is an expanding high-value berry crop worldwide. The presence of prickles, outgrowths of epidermal tissues lacking vasculature, on the canes, petioles, and undersides of leaves complicates both field management and harvest. The utilization of cultivars with fewer prickles or prickle-free canes simplifies production. A previously generated population segregating for prickles utilizing the s locus between the prickle-free cultivar Joan J (ss) and the prickled cultivar Caroline (Ss) was analyzed to identify the genomic region associated with prickle development in red raspberry. Genotype by sequencing (GBS) was combined with a genome-wide association study (GWAS) using fixed and random model circulating probability unification (FarmCPU) to analyze 8474 single nucleotide polymorphisms (SNPs) and identify significant markers associated with the prickle-free trait. A total of four SNPs were identified on chromosome 4 that were associated with the phenotype and were located near or in annotated genes. This study demonstrates how association genetics can be used to decipher the genetic control of important horticultural traits in Rubus, and provides valuable information about the genomic region and potential genes underlying the prickle-free trait.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 192
Author(s):  
Xinghai Duan ◽  
Bingxing An ◽  
Lili Du ◽  
Tianpeng Chang ◽  
Mang Liang ◽  
...  

The objective of the present study was to perform a genome-wide association study (GWAS) for growth curve parameters using nonlinear models that fit original weight–age records. In this study, data from 808 Chinese Simmental beef cattle that were weighed at 0, 6, 12, and 18 months of age were used to fit the growth curve. The Gompertz model showed the highest coefficient of determination (R2 = 0.954). The parameters’ mature body weight (A), time-scale parameter (b), and maturity rate (K) were treated as phenotypes for single-trait GWAS and multi-trait GWAS. In total, 9, 49, and 7 significant SNPs associated with A, b, and K were identified by single-trait GWAS; 22 significant single nucleotide polymorphisms (SNPs) were identified by multi-trait GWAS. Among them, we observed several candidate genes, including PLIN3, KCNS3, TMCO1, PRKAG3, ANGPTL2, IGF-1, SHISA9, and STK3, which were previously reported to associate with growth and development. Further research for these candidate genes may be useful for exploring the full genetic architecture underlying growth and development traits in livestock.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Tomohiro Katsuya ◽  
Kei Asayama ◽  
Ryusuke Inoue ◽  
Ken Sugimoto ◽  
Takayoshi Ohkubo ◽  
...  

AAntihypertensive therapy is a powerful approach to prevent the cardiovascular disease. However, the responsiveness of the therapy is highly individual due to the variability of genetic or environmental factors. To elucidate the genetic background underlying antihypertensive drug responsiveness, we carried out a genome-wide association study (GWAS). The subjects studied were recruited from the participants of HOMED-BP study (UMIN Registered ID C000000137, http://www.cpt.med.tohoku.ac.jp/HOMED-BP/) after obtaining the informed consent for the genetic analysis. After DNA extraction from peripheral blood, about half million single nucleotide polymorphisms (SNPs) were examined using GeneChip Genome-Wide Human SNP5.0 Array (Affymetrix). Home blood pressure (HBP) was measured every day within 1 hour after wake-up and before going to bed using HEM747-IC-N (Omron). The study protocol was approved by the ethical committee of Osaka University. SNP5.0 Array analysis was demonstrated for 300 participants. Antihypertensive therapy for 4weeks decreased their average HBP from 149.9/88.8mmHg to 137.7/82.2mmHg in early morning and 142.6/82.3mmHg to 129.1/74.7mmHg before going to bed. We excluded the SNPs data that showed low call rate, lack of Hardy-Weinberg’s equilibrium and minor allele frequency less than 0.05. Eight SNPs were significantly (p<0.001) associated with mean HBP reduction both in the early morning and at bedtime. Nine SNPs were more significantly (p<0.0001) associated with morning HBP reduction and 3 SNPs were associated with bedtime HBP reduction. In conclusion, GWAS of antihypertensive medication revealed several candidate loci responsible for a month therapy with the difference between morning and evening.


2018 ◽  
Vol 50 (7) ◽  
pp. 523-531 ◽  
Author(s):  
Bingxing An ◽  
Jiangwei Xia ◽  
Tianpeng Chang ◽  
Xiaoqiao Wang ◽  
Jian Miao ◽  
...  

Cattle internal organs as accessible raw materials have a long history of being widely used in beef processing, feed and pharmaceutical industry. These traits not only are of economic interest to breeders, but they are intrinsically linked to many valuable traits, such as growth, health, and productivity. Using the Illumina Bovine HD 770K SNP array, we performed a genome-wide association study for heart weight, liver weight, spleen weight, lung weight, and kidney weight in 1,217 Simmental cattle. In our research, 38 significant single nucleotide polymorphisms (SNPs) ( P < 1.49 × 10−6) were identified for five internal organ weight traits. These SNPs are within or near 13 genes, and some of them have been reported previously, including NDUFAF4, LCORL, BT.94996, SLIT2, FAM184B, LAP3, BBS12, MECOM, CD300LF, HSD17B3, TLR4, MXI1, and MB21D2. In addition, we detected four haplotype blocks on BTA6 containing 18 significant SNPs associated with spleen weight. Our results offer worthy insights into understanding the genetic mechanisms of internal organs' development, with potential application in breeding programs of Simmental beef cattle.


2013 ◽  
Vol 58 (7) ◽  
pp. 1665-1672 ◽  
Author(s):  
Jeremy T. Howard ◽  
Stephen D. Kachman ◽  
Warren M. Snelling ◽  
E. John Pollak ◽  
Daniel C. Ciobanu ◽  
...  

2021 ◽  
Author(s):  
Taeko Shibaya ◽  
Chika Kuroda ◽  
Hisano Tsuruoka ◽  
Chiharu Minami ◽  
Akiko Obara ◽  
...  

Abstract Carrot is a major source of provitamin A in a human diet. Two of the most important traits for carrot breeding are carotenoid contents and root color. To examine genomic regions related to these traits and develop DNA markers for carrot breeding, we performed a genome-wide association study (GWAS) using genome-wide single-nucleotide polymorphisms (SNPs) in two F2 populations, both derived from crosses of orange root carrots bred by a Japanese seed company. The GWAS revealed 21 significant associations, and the physical position of some associations suggested two possible candidate genes. An Orange (Or) gene was a possible candidate for visual color evaluation and the α- and β-carotene contents. Sanger sequencing detected a new allele of Or with an SNP which caused a non-synonymous amino acid substitution. Genotypes of this SNP corresponded to the visual evaluation of root color in another breeding line. A chromoplast-specific lycopene β-cyclase (CYC-B) gene was a possible candidate for the β/α carotene ratio. On CYC-B, five amino acid substitutions were detected between parental plants of the F2 population. The detected associations and SNPs on the possible candidate genes will contribute to carrot breeding and the understanding of carotenoid biosynthesis and accumulation in orange carrots.


Sign in / Sign up

Export Citation Format

Share Document