Solution properties of metal ion complexes formed with the antiviral and cytostatic nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]-2-amino-6-dimethylaminopurine (PME2A6DMAP)

2014 ◽  
Vol 92 (8) ◽  
pp. 771-780 ◽  
Author(s):  
Raquel B. Gómez-Coca ◽  
Astrid Sigel ◽  
Bert P. Operschall ◽  
Antonín Holý ◽  
Helmut Sigel

The acidity constants of protonated 9-[2-(phosphonomethoxy)ethyl]-2-amino-6-dimethylaminopurine (H3(PME2A6DMAP)+) are considered, and the stability constants of the M(H;PME2A6DMAP)+ and M(PME2A6DMAP) complexes (M2+ = Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, or Cd2+) were measured by potentiometric pH titrations in aqueous solution (25 °C; I = 0.1 mol/L, NaNO3). In the M(H;PME2A6DMAP)+ species, H+ and M2+ (mainly outersphere) are at the phosphonate group; this is relevant for phosphoryl-diester bridges in nucleic acids because, in the present system, there is no indication for a M2+–purine binding. This contrasts, for example, with the complexes formed by 9-[2-(phosphonomethoxy)ethyl]adenine, M(H;PMEA)+, where M2+ is mainly situated at the adenine residue. Application of log [Formula: see text] vs. [Formula: see text] plots for simple phosph(on)ate ligands, R–PO32− (R being a residue that does not affect M2+ binding), proves that all M(PME2A6DMAP) complexes have larger stabilities than what would be expected for a M2+–phosphonate coordination. Comparisons with M(PME–R) complexes, where R is a noncoordinating residue of the (phosphonomethoxy)ethane chain, allow one to conclude that the increased stability is due to the formation of five-membered chelates involving the ether–oxygen of the –CH2–O–CH2–PO32− residue: the percentages of formation of these M(PME2A6DMAP)cl/O chelates, which occur in intramolecular equilibria, vary between 20% (Sr2+, Ba2+) and 50% (Zn2+, Cd2+), up to a maximum of 67% (Cu2+). Any M2+ interaction with N3 or N7 of the purine moiety, as in the parent M(PMEA) complexes, is suppressed by the (C2)NH2 and (C6)N(CH3)2 substituents. This observation, together with the previously determined stacking properties, offers an explanation why PME2A6DMAP2– has remarkable therapeutic effects.

1999 ◽  
Vol 64 (4) ◽  
pp. 613-632 ◽  
Author(s):  
Claudia A. Blindauer ◽  
Antonín Holý ◽  
Helmut Sigel

The acidity constants of the twofold protonated nucleotide analogue 1-[2-(phosphonomethoxy)ethyl]cytosine, H2(PMEC)±, as well as the stability constants of the M(H;PMEC)+ and M(PMEC) complexes with the metal ions M2+ = Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ have been determined by potentiometric pH titrations in aqueous solution at I = 0.1 M (NaNO3) and 25 °C. Comparison with previous results for the nucleobase-free compound (phosphonomethoxy)ethane, PME, and the parent nucleotides cytidine 5'-monophosphate (CMP2-) and 2'-deoxycytidine 5'-monophosphate (dCMP2-) shows that the metal ion-binding properties of PMEC2- resemble closely those of PME2-: This means, the primary binding site is the phosphonate group and with all of the metal ions studied, 5-membered chelates involving the ether oxygen of the -CH2-O-CH2-PO32- chain are formed. The position of the isomeric equilibria between these chelates and the "open" complexes, -PO32-/M2+ is calculated; the degree of formation of the chelates is identical within the error limits for the M(PME) and M(PMEC) systems. Hence, like in M(CMP) and M(dCMP) no interaction occurs with the cytosine residue in the M(PMEC) complexes. However, the monoprotonated M(H;PMEC)+ as well as the M(H;CMP)+ and M(dCMP)+ species carry the metal ion predominantly at the nucleobase, while the proton is at the phosph(on)ate group. The coordinating properties of PMEC2- and CMP2- or dCMP2- differ thus only with respect to the possible formation of the 5-membered chelates involving the ether oxygen in M(PMEC) species, a possibility which does not exist in the complexes of the parent nucleotides. Possible reasons why PMEC is devoid of a significant antiviral activity are shortly discussed.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3110
Author(s):  
Claudia Foti ◽  
Ottavia Giuffrè

A potentiometric and UV spectrophotometric investigation on Mn2+-ampicillin and Mn2+-amoxicillin systems in NaCl aqueous solution is reported. The potentiometric measurements were carried out under different conditions of temperature (15 ≤ t/°C ≤ 37). The obtained speciation pattern includes two species for both the investigated systems. More in detail, for system containing ampicillin MLH and ML species, for that containing amoxicillin, MLH2 and MLH ones. The spectrophotometric findings have fully confirmed the results obtained by potentiometry for both the systems, in terms of speciation models as well as the stability constants of the formed species. Enthalpy change values were calculated via the dependence of formation constants of the species on temperature. The sequestering ability of ampicillin and amoxicillin towards Mn2+ was also evaluated under different conditions of pH and temperature via pL0.5 empirical parameter (i.e., cologarithm of the ligand concentration required to sequester 50% of the metal ion present in traces).


2000 ◽  
Vol 7 (6) ◽  
pp. 313-324 ◽  
Author(s):  
Raquel B. Gómez-Coca ◽  
Larisa E. Kapinos ◽  
Antonín Holý ◽  
Rosario A. Vilaplana ◽  
Francisco González-Vílchez ◽  
...  

The stability constants of the mixed-ligand complexes formed between Cu(Arm)2+, where Arm= 2,2'-bipyridine (Bpy) or 1,10-phenanthroline (Phen), and the dianions of 9-[2-(phosphonomethoxy)ethyl]-8-azaadenine (9,8aPMEA) and 8-[2-(phosphonomethoxy)ethyl]-8-azaadenine (8,8aPMEA) (both also abbreviated as PA2-) were determined by potentiometric pH titrations in aqueous solution (25 °C; I = 0.1 M, NaNO3). All four ternary Cu(Arm)(PA) complexes are considerably more stable than corresponding Cu(Arm)(R-PO3) species, where R-PO32− represents a phosph(on)ate ligand with a group R that is unable to participate in any kind of interaction within the complexes. The increased stability is attributed to intramolecular stack formation in the Cu(Arm)(PA) complexes and also to the formation of 5-membered chelates involving the ether oxygen present in the -CH2-O-CH2-PO32− residue of the azaPMEAs. A quantitative analysis of the intramolecular equilibria involving three structurally different Cu(Arm)(PA) species is carried out. For example, about 5% of the Cu(Bpy)(8,8aPMEA) system exist with the metal ion solely coordinated to the phosphonate group, 14% as a 5-membered chelate involving the -CH2-O-CH2-PO32−residue, and 81% with an intramolecular stack between the 8-azapurine moiety and the aromatic rings of Bpy. The results for the other systems are similar though with Phen a formation degree of about 90% for the intramolecular stack is reached. The existence of the stacked species is also proven by spectrophotometric measurements. In addition, the Cu(Arm)(PA) complexes may be protonated, leading to Cu(Arm)(H;PA)+ species for which it is concluded that the proton is located at the phosphonate group and that the complexes are mainly formed by a stacking adduct between Cu(Arm)2+ and H(PA)-. Conclusions regarding the biological properties of these azaPMEAs are shortly indicated.


2000 ◽  
Vol 55 (12) ◽  
pp. 1141-1152 ◽  
Author(s):  
Gunnar Kampf ◽  
Marc Sven Lüth ◽  
Jens Müller ◽  
Antonín Holý ◽  
Bernhard Lippert ◽  
...  

The synthesis of (Dien)Pt(PMEA-N7), where Dien = diethylenetriamine and PMEA2- = dianion of 9-[2-(phosphonomethoxy)ethyl]adenine, is described. No useful biological activity could be discovered for this complex which is in contrast to the known antiviral properties of PMEA itself. The acidity constants of the twofold protonated H2[(Dien)Pt(PMEA-N7)]2+ complex were determined (UV spectrophotometry and potentiometric pH titration): The release of the proton from the -P(O)2(OH)- group is only slightly affected by the N7-coordinated (Dien)Pt2+ unit, whereas the acidity of the (N1)H+ site is strongly enhanced. The stability constants of the M[(Dien)Pt(PMEA-N7)]2+ complexes with the metal ions M2+ = Mg2+, Ca2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ were measured by potentiometric pH titrations in aqueous solution at 25 °C and I = 0.1 M (NaNO3). Application of previously determined straightline plots of log KM(R-PO3)M versus KH(R-PO3)H for simple phosph(on)ate ligands, R-PO32- where R represents a non-inhibiting residue without an affinity for metal ions, proves that the primary binding site of the complex-ligand, (Dien)Pt(PMEA-N7), with all the metal ions studied is the phosphonate group; in most instances the expected stability is actually reduced by about 0.4 log units due to the N7-bound (Dien)Pt2+ unit. Only for the Cu[(Dien)Pt(PMEA-N7)]2+ and the Zn[(Dien)Pt(PMEA-N7)]2+ systems the formation of some 5-membered chelates involving the ether oxygen atom of the -CH2-O-CH2-PO32- residue could be detected; the formation degrees are 52 ± 9% and 32 ± 14%, respectively. The metal ion-binding properties of (Dien)Pt(PMEA-N7) differ considerably from those of PMEA2-, yet they are relatively similar to those of pyrimidine-nucleoside 5'-monophosphates. The structures of the various complex species in solution are discussed and compared.


1999 ◽  
Vol 6 (6) ◽  
pp. 321-328 ◽  
Author(s):  
Bin Song ◽  
Jing Zhao ◽  
Fridrich Gregáň ◽  
Nadja Prónayová ◽  
S. Ali A. Sajadi ◽  
...  

The stability constants of the 1:1 complexes formed between methylphosphonylphosphate (MePP3-), CH3P(O)2--O-PO32- , and Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+,​ or Cd2+ (M2+) were determined by potentiometric pH titration in aqueous solution (25 C° ; l = 0.1 M, NaNO3 ). Monoprotonated M(H;MePP) complexes play only a minor role. Based on previously established correlations for M2+ -diphosphate monoester complex-stabilities and diphosphate monoester β-group. basicities, it is shown that the M(Mepp)- complexes for Mg2+ and the ions of the second half of the 3d series, including Zn2+ and Cd2+, are on average by about 0.15 log unit more stable than is expected based on the basicity of the terminal phosphate group in MePP3-. In contrast, Ba(Mepp)- and Sr(Mepp)- are slightly less stable, whereas the stability for Ca(Mepp)- is as expected, based on the mentioned correlation. The indicated increased stabilities are explained by an increased basicity of the phosphonyl group compared to that of a phosphoryl one. For the complexes of the alkaline earth ions, especially for Ba2+, it is suggested that outersphere complexation occurs to some extent. However, overall the M(Mepp)- complexes behave rather as expected for a diphosphate monoester ligand.


2004 ◽  
Vol 22 (SI - Chem. Reactions in Foods V) ◽  
pp. S106-S108
Author(s):  
S. T Seifert ◽  
R. Krause ◽  
K. Gloe ◽  
T. Henle

The purpose of our work was to examine the metal binding abilities of selected peptide bound Maillard reaction products (MRPs). The N<sup>α</sup>-hippuryl-protected MRPs N<sup>ε</sup>-fructoselysine and N<sup>ε</sup>-carboxymethyllysine were synthesised and measurement of stability constants for complexes formed with the physiologically important metal ions copper(II) and zinc(II) was carried out in aqueous solution (T = 298.1 K; I = 0.1M KNO<sub>3</sub>) using pH-potentiometry. The stability constants of N<sup>ε</sup>-fructoselysine and N<sup>ε</sup>-carboxymethyllysine with Cu(II) proved that new coordination centres are formed by the nonenzymatic glycation of proteins. With zinc(II) no complexation was observed. Physiological consequences are discussed, but further studies are necessary in order to clarify the effects of this phenomenon.


1987 ◽  
Vol 33 (3) ◽  
pp. 405-407 ◽  
Author(s):  
R B Martin ◽  
J Savory ◽  
S Brown ◽  
R L Bertholf ◽  
M R Wills

Abstract An understanding of Al3+-induced diseases requires identification of the blood carrier of Al3+ to the tissues where Al3+ exerts a toxic action. Quantitative studies demonstrate that the protein transferrin (iron-free) is the strongest Al3+ binder in blood plasma. Under plasma conditions of pH 7.4 and [HCO3-]27 mmol/L, the successive stability constant values for Al3+ binding to transferrin are log K1 = 12.9 and log K2 = 12.3. When the concentration of total Al3+ in plasma is 1 mumol/L, the free Al3+ concentration permitted by transferrin is 10(-14.6) mol/L, less than that allowed by insoluble Al(OH)3, by Al(OH)2H2PO4, or by complexing with citrate. Thus transferrin is the ultimate carrier of Al3+ in the blood. We also used intensity changes produced by metal ion binding to determine the stability constants for Fe3+ binding to transferrin: log K1 = 22.7 and log K2 = 22.1. These constants agree closely with a revision of the reported values obtained by equilibrium dialysis. By comparison with Fe3+ binding, the Al3+ stability constants are weaker than expected; this suggests that the significantly smaller Al3+ ions cannot coordinate to all the transferrin donor atoms available to Fe3+.


1977 ◽  
Vol 55 (14) ◽  
pp. 2613-2619 ◽  
Author(s):  
M. S. El-Ezaby ◽  
M. A. El-Dessouky ◽  
N. M. Shuaib

The interactions of Ni(II) and Co(II) with 2-pyridinecarboxaldehyde have been investigated in aqueous solutions at μ = 0.10 M (KNO3) at 30 °C. The stability constants of different complex equilibria have been determined using potentiometric methods. Spectrophotometric methods were also used in the case of the nickel(II) – 2-pyridinecarboxaldehyde system. It was concluded that nickel(II) and cobalt(II), analogous to copper(II), enhance hyrdation of 2-pyridinecarboxaldehyde prior to deprotonation of one of the geminal hydroxy groups. Complex species of 1:1 as well as 1:2 metal ion to ligand composition exist under the experimental conditions used.


2013 ◽  
Vol 52 (18) ◽  
pp. 10347-10355 ◽  
Author(s):  
Ondrej Gutten ◽  
Lubomír Rulíšek

Sign in / Sign up

Export Citation Format

Share Document