DFT-ONIOM study of the dopamine–β-CD complex: NBO and AIM analysis

2015 ◽  
Vol 93 (10) ◽  
pp. 1115-1121 ◽  
Author(s):  
Rayenne Djemil ◽  
Ouassila Attoui-Yahia ◽  
Djameleddine Khatmi

In this work, we conducted a systematic search of the minimum energy of a dopamine–β-cyclodextrin complex via different ONIOM approaches using both mixed (DFT-HF) and nonmixed (DFT-DFT) combinations. Different density functionals were employed: B3LYP, MPW1PW91, M05-2X, M06-2X, and ωB97X-D. Two different basis sets were used on the dopamine–β-cyclodextrin complex; a lower basis set (3-21G*) is used on β-cyclodextrin and a higher basis set (6-31G(d)) is used on dopamine. To fulfill this task, complexation and deformation energies were determined. The relative performance of these functionals was compared with that obtained with the DFT method at the M06-2X/6-31G(d) level that is chosen as a reference method. Although we did not clearly establish an assessment of the relative performance of these density functionals, the efficacy of the ONIOM combination (DFT-HF) is shown compared with a nonmixed ONIOM combination (DFT-DFT). The intermolecular hydrogen bond interactions of the complex obtained with the full M06-2X/6-31G(d) have been analyzed with the atoms-in-molecules and natural bond rrbital methodologies.

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5174
Author(s):  
Frederick Stein ◽  
Jürg Hutter ◽  
Vladimir V. Rybkin

Intermolecular interactions play an important role for the understanding of catalysis, biochemistry and pharmacy. Double-hybrid density functionals (DHDFs) combine the proper treatment of short-range interactions of common density functionals with the correct description of long-range interactions of wave-function correlation methods. Up to now, there are only a few benchmark studies available examining the performance of DHDFs in condensed phase. We studied the performance of a small but diverse selection of DHDFs implemented within Gaussian and plane waves formalism on cohesive energies of four representative dispersion interaction dominated crystal structures. We found that the PWRB95 and ωB97X-2 functionals provide an excellent description of long-ranged interactions in solids. In addition, we identified numerical issues due to the extreme grid dependence of the underlying density functional for PWRB95. The basis set superposition error (BSSE) and convergence with respect to the super cell size are discussed for two different large basis sets.


2014 ◽  
Vol 13 (04) ◽  
pp. 1450030 ◽  
Author(s):  
Aifang Gao ◽  
Aiguo Li

The molecular structures and electron affinities of the R – S / R – S -( R = CH 3, C 2 H 5, n- C 3 H 7, n- C 4 H 9, n- C 5 H 11, i- C 3 H 7, i- C 4 H 9, t- C 4 H 9) species have been studied using 17 pure and hybrid density functionals (five generalized gradient approximation (GGA) methods, six hybrid GGAs, one meta GGA method and five hybrid meta GGAs). The basis set used in this work is of double-ζ plus polarization quality with additional diffuse s- and p-type functions, denoted by DZP++. The geometries are fully optimized with each DFT method and discussed. Harmonic vibrational frequencies are found to be within 3.5% of available experimental values for most functionals. Three different types of the neutral-anion energy separations have been presented. The theoretical electron affinities of alkylthio radicals are in good agreement with the experiment data. The M06 method is very good for the adiabatic electron affinity calculations, and the average absolute error is 0.0439 eV. The HCTH method performs better for EA prediction. The M06-HF, mPWPW91, VSXC and B98 are also reasonable. The most reliable adiabatic electron affinities are predicted to be 1.864 eV ( CH 3 S ), 1.946 eV ( C 2 H 5 S ), 1.959 eV (n- C 3 H 7 S ), 1.970 eV (n- C 4 H 9 S ), 1.982 eV (n- C 5 H 11 S ), 2.053 eV (i- C 3 H 7 S ), 1.991 eV (i- C 4 H 9 S ) and 2.100 eV (t- C 4 H 9 S ) at the M06/DZP++ level of theory, respectively.


2020 ◽  
Author(s):  
Maurício Gustavo Rodrigues ◽  
Leonardo Talavera Campos ◽  
Gabriel Soares Campos

Choosing the best quantum method and basis function is sometimes difficult. It is necessary to take into account the computational costs in the same time of accuracy of the combination of quantum method and basis function. DFT methods and Pople basis set are the most common choices on molecular quantum calculation. This study makes a benchmark of DFT methods and different combinations of Pople basis sets on H2S and SO2 molecules. This choice aims decide this combination to explain better the formation on acid rain in environment, specially to high school Brazilian students. After the analysis of the better combinations of DFT method and Pople basis set, some IRC and TS calculations are going to be done to understand better inorganic reaction with sulfur.


2020 ◽  
Author(s):  
Peter Kraus

Improving results of correlated wavefunction theory calculations by extrapolating from successive basis sets is nowadays a common practice. However, such approaches are uncommon in density functional theory, especially due its faster convergence towards the basis set limit. In this work I present approaches for basis set extrapolation in density functional theory that enable users to obtain results of 4-zeta quality from 3- and 2-zeta calculations, i.e. at a fraction of the computational cost. The extrapolation techniques work well with modern density functionals and common basis sets.<br>


2021 ◽  
Author(s):  
Christina Yeo ◽  
Minh Nguyen ◽  
Lee-Ping Wang

Many renewable energy technologies, such as hydrogen gas synthesis and carbon dioxide reduction, rely on chemical reactions involving hydride anions. When selecting molecules to be used in such applications, an important quantity to consider is the thermodynamic hydricity, which is the free energy required for a species to donate a hydride anion. Theoretical calculations of thermodynamic hydricity depend on several parameters, mainly the density functional, basis set, and solvent model. In order to assess the effects of the above three parameters, we carry out hydricity calculations for a set of molecules with known experimental hydricity values, generate linear �fits, and compare the R-squared, root-mean-squared error, and Akaike Information Criterion across different combinations of density functionals, basis sets, and solvent models. Based on these results we are able to quantify the accuracy of theoretical predictions of hydricity and recommend the parameters with the best compromise between accuracy and computational cost.


2019 ◽  
Vol 17 (1) ◽  
pp. 46-53
Author(s):  
Reşat Ustabaş ◽  
Nevin Süleymanoğlu ◽  
Namık Özdemir ◽  
Nuran Kahriman ◽  
Ersan Bektaş ◽  
...  

A new chalcone derivative, called as 1-(4-(benzylideneamino)phenyl)-3-(furan-2-yl)prop-2- en-1-one (I), was synthezised and characterized by spectral methods (infrared (IR) and proton and carbon- 13 nuclear magnetic resonance (1H- and 13C-NMR) spectroscopy). A computational study was performed by the density functional theory (DFT) method. Spectral data of compound I optimized by using 6-311G(d,p) and 6-311++G(d,p) basis sets were obtained by 6-311++G(d,p) basis set. The E-Z isomerism for newly synthesized chalcone derivative was investigated by considering four isomeric form, E/E, E/Z, Z/E and Z/Z. The results show that, as assumed and thus named, the chalcone derivative is in the E/E form. In addition, quantum chemical parameters were calculated by using DFT method with 6-311++G(d,p) basis set. Antioxidant activity of compound I was determined by the ferric reducing ability of plasma (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay methods. Compound I has low antioxidant activity.


2020 ◽  
Author(s):  
Peter Kraus

Improving results of correlated wavefunction theory calculations by extrapolating from successive basis sets is nowadays a common practice. However, such approaches are uncommon in density functional theory, especially due its faster convergence towards the basis set limit. In this work I present approaches for basis set extrapolation in density functional theory that enable users to obtain results of 4-zeta quality from 3- and 2-zeta calculations, i.e. at a fraction of the computational cost. The extrapolation techniques work well with modern density functionals and common basis sets.<br>


Sign in / Sign up

Export Citation Format

Share Document