On topological indices of a carbon nanotube network

2015 ◽  
Vol 93 (10) ◽  
pp. 1157-1160 ◽  
Author(s):  
Martin Bača ◽  
Jarmila Horváthová ◽  
Martina Mokrišová ◽  
Andrea Semaničová-Feňovčíková ◽  
Alžbeta Suhányiová

A numerical quantity that characterizes the whole structure of a graph is called a topological index. The concept of Randić (Rα), atom−bond connectivity (ABC), and geometric−arithmetic (GA) topological indices was established in chemical graph theory based on vertex degrees. In this paper, we study a carbon nanotube network that is motivated by the molecular structure of a regular hexagonal lattice and determine Rα, ABC, and GA indices for this important class of networks.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Wei Gao ◽  
Muhammad Kamran Siddiqui

A topological index is a real number associated with chemical constitution purporting for correlation of chemical structure with various physical properties, chemical reactivity, or biological activity. The concept of hyper Zagreb index, first multiple Zagreb index, second multiple Zagreb index, and Zagreb polynomials was established in chemical graph theory based on vertex degrees. It is reported that these indices are useful in the study of anti-inflammatory activities of certain chemical networks. In this paper, we study carbon nanotube networks which are motivated by molecular structure of regular hexagonal lattice and also studied interconnection networks which are motivated by molecular structure of a chemical compound SiO4. We determine hyper Zagreb index, first multiple Zagreb index, second multiple Zagreb index, and Zagreb polynomials for some important class of carbon nanotube networks, dominating oxide network, dominating silicate network, and regular triangulene oxide network.


2017 ◽  
Vol 72 (8) ◽  
pp. 711-716 ◽  
Author(s):  
Adnan Aslam ◽  
Safyan Ahmad ◽  
Wei Gao

AbstractThe topological index gives information about the whole structure of a chemical graph, especially degree-based topological indices that are very useful. Boron triangular nanotubes are now replacing usual carbon nanotubes due to their excellent properties. We have computed general Randić (Rα), first Zagreb (M1) and second Zagreb (M2), atom-bond connectivity (ABC), and geometric–arithmetic (GA) indices of boron triangular nanotubes. Also, we have computed the fourth version of atom-bond connectivity (ABC4) and the fifth version of geometric–arithmetic (GA5) indices of boron triangular nanotubes.


2020 ◽  
Vol 8 (1) ◽  
pp. 65
Author(s):  
Murat Cancan ◽  
Kerem Yamaç ◽  
Ziyattin Taş ◽  
Mehmet Şerif Aldemir

Carborundum, also known as silicon carbide which containing carbon and silicon, is a semiconductor. Molecular topological properties of physical substances are important tools to investigate the underlying topology of these substances. Ev-degree and ve-degree based on the molecular topological indices have been defined as parallel to their corresponding classical degree based topological indices in chemical graph theory. Classical degree based topological properties of carborundum have been investigated recently. As a continuation of these studies, in this study, we compute novel ve-degree harmonic, ve-degree sum-connectivity, ve-degree geometric-arithmetic, and ve-degree atom-bond connectivity, the first and the fifth harmonic molecular topological indices of two carborundum structures. 


In chemical graph theory, topological index is one of the graph invariants which is a fixed number based on structure of a graph. Topological index is used as one of the tool to analyze molecular structures and for proper and optimal design of nanostructure. In this paper we realize the real numbers that are topological indices such as Zagreb indices, Randic index, NK-index, multiplicative F-index and multiplicative Zagreb indices along with some characterizations.


2021 ◽  
Vol 19 (1) ◽  
pp. 646-652
Author(s):  
Dongming Zhao ◽  
Manzoor Ahmad Zahid ◽  
Rida Irfan ◽  
Misbah Arshad ◽  
Asfand Fahad ◽  
...  

Abstract In recent years, several structure-based properties of the molecular graphs are understood through the chemical graph theory. The molecular graph G G of a molecule consists of vertices and edges, where vertices represent the atoms in a molecule and edges represent the chemical bonds between these atoms. A numerical quantity that gives information related to the topology of the molecular graphs is called a topological index. Several topological indices, contributing to chemical graph theory, have been defined and vastly studied. Recent inclusions in the class of the topological indices are the K-Banhatti indices. In this paper, we established the precise formulas for the first and second K-Banhatti, modified K-Banhatti, K-hyper Banhatti, and hyper Revan indices of silicon carbide Si 2 C 3 {{\rm{Si}}}_{2}{{\rm{C}}}_{3} - III [ n , m ] {\rm{III}}\left[n,m] . In addition, we present the graphical analysis along with the comparison of these indices for Si 2 C 3 {{\rm{Si}}}_{2}{{\rm{C}}}_{3} - III [ n , m ] {\rm{III}}\left[n,m] .


2021 ◽  
Vol 44 (1) ◽  
pp. 165-172
Author(s):  
Yongsheng Rao ◽  
Ammarah Kanwal ◽  
Riffat Abbas ◽  
Saima Noureen ◽  
Asfand Fahad ◽  
...  

Abstract In the modern era of the chemical science, the chemical graph theory has contributed significantly to exploring the properties of the chemical compounds. Currently, the computation of the topological indices is one of the most active directions of the research in the area of the chemical graph theory. The main feature of the study of the topological indices is its its ability of predicting the various physio-chemical properties. In this article, we compute several degree-based topological indices for the caboxy-terminated dendritic macromolecule. We compute Harmonic index, atom-bond connectivity index, geometric arithmetic index, sum connectivity index, inverse sum index, symmetric division degree, and Zagreb indices for caboxy-terminated dendritic macromolecule. The obtained results have potential to predict biochemical properties such as viscosity, entropy, and boiling point.


2018 ◽  
Vol 16 (1) ◽  
pp. 1184-1188 ◽  
Author(s):  
Nazeran Idrees ◽  
Muhammad Jawwad Saif ◽  
Afshan Sadiq ◽  
Asia Rauf ◽  
Fida Hussain

AbstractIn chemical graph theory, a single numeric number related to a chemical structure is called a topological descriptor or topological index of a graph. In this paper, we compute analytically certain topological indices for H-Naphtalenic nanosheet like Randic index, first Zagreb index, second Zagreb index, geometric arithmetic index, atom bond connectivity index, sum connectivity index and hyper-Zagreb index using edge partition technique. The first multiple Zagreb index and the second multiple Zagreb index of the nanosheet are also discussed in this paper.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jia-Bao Liu ◽  
Ting Zhang ◽  
Sakander Hayat

It is one of the core problems in the study of chemical graph theory to study the topological index of molecular graph and the internal relationship between its structural properties and some invariants. In recent years, topological index has been gradually applied to the models of QSAR and QSPR . In this work, using the definition of the ABC index, AZI index, GA index, the multiplicative version of ordinary first Zagreb index, the second multiplicative Zagreb index, and Zagreb index, we calculate the degree-based topological indices of some networks. Then, the above indices’ formulas are obtained.


2020 ◽  
Vol 18 (1) ◽  
pp. 1362-1369
Author(s):  
Farkhanda Afzal ◽  
Sabir Hussain ◽  
Deeba Afzal ◽  
Saira Hameed

AbstractChemical graph theory is a subfield of graph theory that studies the topological indices for chemical graphs that have a good correlation with chemical properties of a chemical molecule. In this study, we have computed M-polynomial of zigzag edge coronoid fused by starphene. We also investigate various topological indices related to this graph by using their M-polynomial.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Lian Chen ◽  
Abid Mehboob ◽  
Haseeb Ahmad ◽  
Waqas Nazeer ◽  
Muhammad Hussain ◽  
...  

In the fields of chemical graph theory, topological index is a type of a molecular descriptor that is calculated based on the graph of a chemical compound. In 1947, Wiener introduced “path number” which is now known as Wiener index and is the oldest topological index related to molecular branching. Hosoya polynomial plays a vital role in determining Wiener index. In this report, we computed the Hosoya and the Harary polynomials for TOX(n),RTOX(n),TSL(n), and RTSL(n) networks. Moreover, we computed serval distance based topological indices, for example, Wiener index, Harary index, and multiplicative version of wiener index.


Sign in / Sign up

Export Citation Format

Share Document