scholarly journals On molecular topological properties of diamond-like networks

2017 ◽  
Vol 95 (7) ◽  
pp. 758-770 ◽  
Author(s):  
Muhammad Imran ◽  
Abdul Qudair Baig ◽  
Hafiz Muhammad Afzal Siddiqui ◽  
Rabia Sarwar

The Randić (product) connectivity index and its derivative called the sum-connectivity index are well-known topological indices and both of these descriptors correlate well among themselves and with the π-electronic energies of benzenoid hydrocarbons. The general n connectivity of a molecular graph G is defined as [Formula: see text] and the n sum connectivity of a molecular graph G is defined as [Formula: see text], where the paths of length n in G are denoted by [Formula: see text] and the degree of each vertex vi is denoted by di. In this paper, we discuss third connectivity and third sum-connectivity indices of diamond-like networks and compute analytical closed results of these indices for diamond-like networks.

Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 433 ◽  
Author(s):  
Jialin Zheng ◽  
Zahid Iqbal ◽  
Asfand Fahad ◽  
Asim Zafar ◽  
Adnan Aslam ◽  
...  

Topological indices have been computed for various molecular structures over many years. These are numerical invariants associated with molecular structures and are helpful in featuring many properties. Among these molecular descriptors, the eccentricity connectivity index has a dynamic role due to its ability of estimating pharmaceutical properties. In this article, eccentric connectivity, total eccentricity connectivity, augmented eccentric connectivity, first Zagreb eccentricity, modified eccentric connectivity, second Zagreb eccentricity, and the edge version of eccentric connectivity indices, are computed for the molecular graph of a PolyEThyleneAmidoAmine (PETAA) dendrimer. Moreover, the explicit representations of the polynomials associated with some of these indices are also computed.


2002 ◽  
Vol 67 (2) ◽  
pp. 87-97 ◽  
Author(s):  
Ivan Gutman ◽  
Dusica Vidovic ◽  
Anka Nedic

The connectivity index of an organic molecule whose molecular graph is Gis defined as C(?)=?(?u?v)??where ?u is the degree of the vertex u in G, where the summation goes over all pairs of adjacent vertices of G and where ? is a pertinently chosen exponent. The usual value of ? is ?1/2, in which case ?=C(?1/2) is referred to as the Randic index. The ordering of isomeric alkanes according to ??follows the extent of branching of the carbon-atom skeleton. We now study the ordering of the constitutional isomers of alkanes with 6 through 10 carbon atoms with respect to C(?) for various values of the parameter ?. This ordering significantly depends on ?. The difference between the orderings with respect to ??and with respect to C(?) is measured by a function ??and the ?-dependence of ??was established.


2018 ◽  
Vol 7 (2) ◽  
pp. 123-129 ◽  
Author(s):  
Adnan Aslam ◽  
Muhammad Kamran Jamil ◽  
Wei Gao ◽  
Waqas Nazeer

AbstractA numerical number associated to the molecular graphGthat describes its molecular topology is called topological index. In the study ofQSARandQSPR, topological indices such as atom-bond connectivity index, Randić connectivity index, geometric index, etc. help to predict many physico-chemical properties of the chemical compound under study. Dendrimers are macromolecules and have many applications in chemistry, especially in self-assembly procedures and host-guest reactions. The aim of this report is to compute degree-based topological indices, namely the fourth atom-bond connectivity index and fifth geometric arithmetic index of poly propyl ether imine, zinc porphyrin, and porphyrin dendrimers.


Author(s):  
S. Alyar ◽  
R. Khoeilar ◽  
A. Jahanbani

There are immense applications of graph theory in chemistry and in the study of molecular structures, and after that, it has been increasing exponentially. Molecular graphs have points (vertices) representing atoms and lines (edges) that represent bonds between atoms. In this paper, we study the molecular graph of porphyrin, propyl ether imine, zinc–porphyrin and poly dendrimers and analyzed its topological properties. For this purpose, we have computed topological indices, namely the Albertson index, the sigma index, the Nano-Zagreb index, the first and second hyper [Formula: see text]-indices of porphyrin, propyl ether imine, zinc–porphyrin and poly dendrimers.


2019 ◽  
Vol 74 (5) ◽  
pp. 367-370 ◽  
Author(s):  
Deqiang Chen

AbstractIn this paper, we show that both the general product-connectivity index χα and the general sum-connectivity index \({}^{s}{\chi_{\alpha}}\) are closely related molecular descriptors when the real number α is in some interval. By comparing these two kinds of indices, we show that the sum-connectivity index \({}^{s}{\chi_{-0.5601}}\) is the best one for measuring the π-electronic energies of lower benzenoid hydrocarbons. These improve the earlier results.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 403
Author(s):  
G. Mohanappriya ◽  
D. Vijiyalakshmi

Molecular descriptors (Topological indices) are the numerical invariants of a molecular graph which distinguish its topology. In this article, we compute edge version of topological indices such as Zagreb index, Atom bond connectivity index, Fourth atom bond connectivity index, Geometric Arithmetic index and Fifth Geometric Arithmetic index of tetrameric 1,3 adamantane. 


2018 ◽  
Vol 10 (05) ◽  
pp. 1850065 ◽  
Author(s):  
Muhammad Imran ◽  
Abdul Qudair Baig ◽  
Muhammad Razwan Azhar

Among topological descriptor of graphs, the connectivity indices are very important and they have a prominent role in theoretical chemistry. The atom-bond connectivity index of a connected graph [Formula: see text] is represented as [Formula: see text], where [Formula: see text] represents the degree of a vertex [Formula: see text] of [Formula: see text] and the eccentric connectivity index of the molecular graph [Formula: see text] is represented as [Formula: see text], where [Formula: see text] is the maximum distance between the vertex [Formula: see text] and any other vertex [Formula: see text] of the graph [Formula: see text]. The new eccentric atom-bond connectivity index of any connected graph [Formula: see text] is defined as [Formula: see text]. In this paper, we compute the new eccentric atom-bond connectivity index for infinite families of tetra sheets equilateral triangular and rectangular networks.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Tanweer Ul Islam ◽  
Zeeshan Saleem Mufti ◽  
Aqsa Ameen ◽  
Muhammad Nauman Aslam ◽  
Ali Tabraiz

A topological index, also known as connectivity index, is a molecular structure descriptor calculated from a molecular graph of a chemical compound which characterizes its topology. Various topological indices are categorized based on their degree, distance, and spectrum. In this study, we calculated and analyzed the degree-based topological indices such as first general Zagreb index M r G , geometric arithmetic index GA G , harmonic index H G , general version of harmonic index H r G , sum connectivity index λ G , general sum connectivity index λ r G , forgotten topological index F G , and many more for the Robertson apex graph. Additionally, we calculated the newly developed topological indices such as the AG 2 G and Sanskruti index for the Robertson apex graph G.


2020 ◽  
Vol 10 (1) ◽  
pp. 1738-1747

A molecular graph or a chemical graph is a graph related to the structure of a chemical compound. The topological indices play a vital role in understanding the physical, chemical, and topological properties of the respective compound. ln this article, we discuss the computation of the degree-based topological indices, namely - the fifth M-Zagreb indices and their polynomials, fifth hyper M-Zagreb indices and their polynomials, general fifth M-Zagreb indices and their polynomials, third Zagreb index and it is polynomial for the TUC_4 C_8 (R)[p,q] lattice, its subdivision, and para-line graphs.


2020 ◽  
Vol 16 (2) ◽  
pp. 190-195 ◽  
Author(s):  
Süleyman Ediz ◽  
Murat Cancan

Background: Reckoning molecular topological indices of drug structures gives the data about the underlying topology of these drug structures. Novel anticancer drugs have been leading by researchers to produce ideal drugs. Materials and Methods: Pharmacological properties of these new drug agents explored by utilizing simulation strategies. Topological indices additionally have been utilized to research pharmacological properties of some drug structures. Novel alkylating agents based anticancer drug candidates and ve-degree molecular topological indices have been introduced recently. Results and Conclusion: In this study we calculate ve-degree atom-bond connectivity, harmonic, geometric-arithmetic and sum-connectivity molecular topological indices for the newly defined alkylating agents based dual-target anticancer drug candidates.


Sign in / Sign up

Export Citation Format

Share Document