Gold nanoparticle-functionalized niobium oxide perovskites as photocatalysts for visible light-induced aromatic alcohol oxidations

2018 ◽  
Vol 96 (7) ◽  
pp. 664-671 ◽  
Author(s):  
Melissa Chassé ◽  
Geniece L. Hallett-Tapley

Spherical gold nanoparticles have been supported onto the surface of potassium niobium oxide perovskites, an underdeveloped class of semiconductor in photocatalytic organic transformations. The nanoparticle dopants of 9.5 nm in diameter and surface plasmon absorption at 530 nm are examined as possible visible light induced catalysts using alcohol photooxidation as the probe reaction. The nanomaterial-induced photooxidation of a series of aromatic alcohols is examined, in the absence of solvent, as a function of base, H2O2, and catalyst concentrations, as well as using multiple visible light sources. This experimental methodology affords extremely selective photooxidation to the carbonyl products (>99%) in as little as 2 h. Using the results obtained from the substitution of the aromatic alcohol, the proposed photocatalytic mechanism is suggested to rely heavily on plasmon-initiated electron transfer from the gold nanoparticle surface to the potassium niobium oxide perovskite and subsequent reductive decomposition of H2O2. This photodegradation step is proposed to favor the formation of ketyl radical species, a key intermediate in the visible light induced mechanism that undergoes both an electron and proton transfer to facilitate formation of the final, carbonyl products. Furthermore, the gold nanoparticle – potassium niobium oxide catalyst exhibits moderate reusability, highly desired in the realm of heterogeneous catalysis.

2017 ◽  
Vol 7 (23) ◽  
pp. 5758-5765 ◽  
Author(s):  
Emily K. Piggott ◽  
Taylor O. Hope ◽  
Bry W. Crabbe ◽  
Pierre-Michel Jalbert ◽  
Galina Orlova ◽  
...  

Novel gold nanoparticle@niobium oxide perovskite composites promote the photoreduction of para-substituted nitroarenes, where electron-withdrawing groups accelerate the photocatalytic reaction.


2020 ◽  
Vol 07 ◽  
Author(s):  
Avik K. Bagdi ◽  
Papiya Sikdar

Abstract:: Organic synthesis under environment friendly conditions has great impact in the sustainable development. In this context, visible light photocatalysis has emerged as a green model as this offers an energy-efficient pathway towards the organic transformation. Different transition-metal catalysts (Ir-, Ru-, Cu- etc) and organic dyes (eosin Y, rose bengal, methylene blue etc) are well-known photocatalysts in organic synthesis. Apart from the well-known organophotoredox catalysts, rhodamines (Rhodamine B and Rhodamine 6G) have been also employed as efficient photocatalysts for different organic transformations. In this review, we will focus on the photocatalysis by rhodamines in organic synthesis. Mechanistic pathway of the methodologies will also be discussed. We believe this review will stimulate the employment of rhodamines in the visible light photocatalysis for efficient organic transformations in the future.


2018 ◽  
Vol 17 (5) ◽  
pp. 628-637 ◽  
Author(s):  
Haydar Ali ◽  
Nikhil R. Jana

A gold nanoparticle–graphene based composite has been developed for the degradation of bisphenol A under visible light and to detoxify contaminated water/food/environments.


RSC Advances ◽  
2017 ◽  
Vol 7 (2) ◽  
pp. 1089-1092 ◽  
Author(s):  
Akira Onoda ◽  
Hirofumi Harada ◽  
Taro Uematsu ◽  
Susumu Kuwabata ◽  
Ryo Yamanaka ◽  
...  

A WO3 photoelectrode immobilizing a fibrous gold nanoparticle (AuNP) assembly using an amyloid-β (Aβ) peptide exhibits enhanced photocurrent generation upon visible light irradiation.


2020 ◽  
Author(s):  
Michael O'Hagan ◽  
Javier Ramos Soriano ◽  
Susanta Haldar ◽  
Juan Carlos Morales ◽  
Adrian Mulholland ◽  
...  

<div><p>Photoresponsive ligands for G-quadruplex oligonucleotides (G4) offer exciting opportunities for the reversible regulation of these assemblies with potential applications in biological chemistry and responsive nanotechnology. However, achieving the robust regulation of G4 ligand activity with low-energy visible light sources that are easily accessible and compatible with biological systems remains a significant challenge to realizing these applications. Herein, we report the G4-binding properties of a photoresponsive dithienylethene (DTE). We demonstrate the first example of G4-specific acceleration of the photoswitching kinetics of a small molecule and the visible-light mediated switching of the G4 ligand binding mode in physiologically-relevant conditions, which in turn allows control over the G4 tetrad structure of telomeric G4 in potassium buffer. The process is fully reversible and avoids the need for high-energy UV light. This affords an efficient, practical and biologically-relevant means of control that may be applied in the generation of new responsive G4/ligand supramolecular systems.</p></div><br>


Sign in / Sign up

Export Citation Format

Share Document