scholarly journals Surface Enhanced Infrared Spectroelectrochemistry using a Microband Electrode

Author(s):  
Tyler A. Morhart ◽  
Kaiyang Tu ◽  
Stuart Read ◽  
Scott M Rosendahl ◽  
Garth Wells ◽  
...  

The successful use of a microband electrode printed on a silicon internal reflection element to perform time resolved infrared spectroscopy is described. Decreasing the critical dimension of the microband electrode to several hundred micrometers provides a sub-microsecond time constant in a Kretschmann configured spectroelectrochemical cell. The high brilliance of synchrotron sourced infrared radiation has been combined with a specially designed horizontal attenuated total reflectance (ATR) microscope to focus the infrared beam on the microband electrode. The first use of a sub-microsecond time constant working electrode for ATR surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) is reported. Measurements show that the advantage afforded by the high brilliance of the synchrotron source is at least partially offset by increased noise from the experimental floor. The test system was the potential induced desorption of an adsorbed monolayer of 4-methoxypyridine as measured using step-scan interferometry. Based on diffusion considerations alone, the expected time scale of the process was less than 10 microseconds but was experimentally measured to be three orders of magnitude slower. A defect-mediated dissolution of the condensed film is speculated to be the underlying cause of the unexpected slow kinetics.

2003 ◽  
Vol 68 (1) ◽  
pp. 89-104 ◽  
Author(s):  
Stanislav Záliš ◽  
Antonín Vlček ◽  
Chantal Daniel

This contribution presents the results of the TD-DFT and CASSCF/CASPT2 calculations on [W(CO)4(MeDAB)] (MeDAB = N,N'-dimethyl-1,4-diazabutadiene), [W(CO)4(en)] (en = ethylenediamine), [W(CO)5(py)] (py = pyridine) and [W(CO)5(CNpy)] (CNpy = 4-cyanopyridine) complexes. Contrary to the textbook interpretation, calculations on the model complex [W(CO)4(MeDAB)] and [W(CO)5(CNpy)] show that the lowest W→MeDAB and W→CNpy MLCT excited states are immediately followed in energy by several W→CO MLCT states, instead of ligand-field (LF) states. The lowest-lying excited states of [W(CO)4(en)] system were characterized as W(COeq)2→COax CT excitations, which involve a remarkable electron density redistribution between axial and equatorial CO ligands. [W(CO)5(py)] possesses closely-lying W→CO and W→py MLCT excited states. The calculated energies of these states are sensitive to the computational methodology used and can be easily influenced by a substitution effect. The calculated shifts of [W(CO)4(en)] stretching CO frequencies due to excitation are in agreement with picosecond time-resolved infrared spectroscopy experiments and confirm the occurrence of low-lying M→CO MLCT transitions. No LF electronic transitions were found for either of the complexes studied in the region up to 4 eV.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1220
Author(s):  
Jan Honzíček ◽  
Eliška Matušková ◽  
Štěpán Voneš ◽  
Jaromír Vinklárek

This study describes the catalytic performance of an iron(III) complex bearing a phthalocyaninato-like ligand in two solvent-borne and two high-solid alkyd binders. Standardized mechanical tests revealed strong activity, which appeared in particular cases at concentrations about one order of magnitude lower than in the case of cobalt(II) 2-ethylhexanoate, widespread used in paint-producing industry. The effect of the iron(III) compound on autoxidation process, responsible for alkyd curing, was quantified by kinetic measurements by time-resolved infrared spectroscopy and compared with several primary driers. Effect of the drier concentration on coloration of transparent coatings was determined by UV–Vis spectroscopy.


2020 ◽  
Vol 22 (45) ◽  
pp. 26459-26467
Author(s):  
Jessica L. Klocke ◽  
Tilman Kottke

Flavin photoreduction in H2O is elucidated by developing a quantum cascade laser setup for time-resolved infrared spectroscopy on irreversible reactions.


2019 ◽  
Vol 33 (1) ◽  
pp. 1029-1033 ◽  
Author(s):  
Daniel Hallinan ◽  
Maria Grazia De Angelis ◽  
Marco Giacinti Baschetti ◽  
Giulio Sarti ◽  
Yossef A. Elabd

2017 ◽  
Vol 114 (33) ◽  
pp. E6804-E6811 ◽  
Author(s):  
Sebastian Buchenberg ◽  
Florian Sittel ◽  
Gerhard Stock

Allostery represents a fundamental mechanism of biological regulation that is mediated via long-range communication between distant protein sites. Although little is known about the underlying dynamical process, recent time-resolved infrared spectroscopy experiments on a photoswitchable PDZ domain (PDZ2S) have indicated that the allosteric transition occurs on multiple timescales. Here, using extensive nonequilibrium molecular dynamics simulations, a time-dependent picture of the allosteric communication in PDZ2S is developed. The simulations reveal that allostery amounts to the propagation of structural and dynamical changes that are genuinely nonlinear and can occur in a nonlocal fashion. A dynamic network model is constructed that illustrates the hierarchy and exceeding structural heterogeneity of the process. In compelling agreement with experiment, three physically distinct phases of the time evolution are identified, describing elastic response (≲0.1 ns), inelastic reorganization (∼100 ns), and structural relaxation (≳1μs). Issues such as the similarity to downhill folding as well as the interpretation of allosteric pathways are discussed.


1985 ◽  
Vol 51 ◽  
Author(s):  
B. C. Larson ◽  
J. Z. Tischler ◽  
D. M. Mills

ABSTRACTNanosecond resolution time-resolved x-ray diffraction measurements of thermal strain have been used to measure the interface temperatures in silicon during pulsed-laser irradiation. The pulsed-time-structure of the Cornell High Energy Synchrotron Source (CHESS) was used to measure the temperature of the liquid-solid interface of <111> silicon during melting with an interface velocity of 11 m/s, at a time of near zero velocity, and at a regrowth velocity of 6 m/s. The results of these measurements indicate 110 K difference between the temperature of the interface during melting and regrowth, and the measurement at zero velocity shows that most of the difference is associated with undercooling during the regrowth phase.


Sign in / Sign up

Export Citation Format

Share Document