The influence of vehicle–tire contact force area on vehicle–bridge dynamic interaction

2016 ◽  
Vol 43 (8) ◽  
pp. 769-772 ◽  
Author(s):  
Longwei Zhang ◽  
Hua Zhao ◽  
Eugene J. OBrien ◽  
Xudong Shao ◽  
Chengjun Tan

This paper proposes an updated vehicle–tire contact force model to simulate vehicle–bridge interaction, considering the tire contact area and the thickness of the bridge wearing surface. In contrast to the traditional methods of using a single-point tire contact force with a moving average filter, the proposed model uses multiple-point contact forces to account for the tire contact area. Results show that both the longitudinal and transverse distribution of tire contact force have a significant effect.

Author(s):  
P. Flores ◽  
J. Ambro´sio ◽  
J. C. P. Claro ◽  
H. M. Lankarani

This work deals with a methodology to assess the influence of the spherical clearance joints in spatial multibody systems. The methodology is based on the Cartesian coordinates, being the dynamics of the joint elements modeled as impacting bodies and controlled by contact forces. The impacts and contacts are described by a continuous contact force model that accounts for geometric and mechanical characteristics of the contacting surfaces. The contact force is evaluated as function of the elastic pseudo-penetration between the impacting bodies, coupled with a nonlinear viscous-elastic factor representing the energy dissipation during the impact process. A spatial four bar mechanism is used as an illustrative example and some numerical results are presented, being the efficiency of the developed methodology discussed in the process of their presentation. The results obtained show that the inclusion of clearance joints in the modelization of spatial multibody systems significantly influences the prediction of components’ position and drastically increases the peaks in acceleration and reaction moments at the joints. Moreover, the system’s response clearly tends to be nonperiodic when a clearance joint is included in the simulation.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Gengxiang Wang ◽  
Hongzhao Liu

Effects of wear and member flexibility on the dynamic performance of a planar five-bar mechanism with joint-clearance are investigated. The equation of motion of the mechanism is derived based on the absolute nodal coordinate formulation (ANCF). In order to enhance the accuracy of the contact force, the slope of the load–displacement curve of the cylindrical joint with clearance is used. The contact deformation couples the joint wear to the contact state. The contact force model of Flores and coworkers is improved, by the introduction of the stiffness coefficient. The wear depth is predicted by using the Archard's wear model. Simulations show that the multiclearance joints can generate stronger contact forces relative to single clearance joint case. This leads to more severe wear in the joint. However, the mechanism with multiple flexible links can absorb more of the energy arising from the clearance joint, and this improves the wear phenomenon.


Author(s):  
H. M. Lankarani ◽  
F. Wu

Abstract Reducing the severity of an impact to a structure or a multibody system is a significant aspect of engineering design. This requires the knowledge of variations of the resulting contact forces and also how these contact forces can be reduced. This paper presents an optimization methodology for the selection of proper parameters in the contact/impact force models so as to minimize the maximum value of the contact force. A two-particle model of an impact between two solids is considered, and then generalized to the impact analysis between two bodies of a multibody system. The concept of effective mass is presented in order to compensate for the effect of joint forces or impulses. The system is reduced to a single degree-of-freedom mass-spring-damper vibro-impact system. A single differential equation of motion in the direction of relative indentation of local contact surfaces is derived. Different contact force models of hysteresis form including linear and nonlinear models are described. An optimization problem is then formulated and solved by using the method of modified feasible direction for constrained minimization. A numerical integrator is used at every design iteration to obtain the system dynamic response for a given set of design variables. The objective function is to minimize the peak acceleration of the system equivalent mass resulting from the contact force. Comparison of the system with optimal parameters and non-optimal one shows that the peak contact force is greatly reduced for the optimal one. Since these parameters reflect the material properties (stiffness and damping) of the impacting bodies or surfaces, suitable materials may then be selected based upon the information provided by this optimization procedure. It is observed that the materials, which have good crashworthiness properties should posses capability of dissipating impact energy both in the forms of permanent indentation and internal damping friction. Based upon the analysis of the impact responses, mechanism of energy dissipation, and the typical force-indentation diagram for the high energy absorption materials obtained from experiments, a new contact force model is proposed which could precisely describe the impact response of high energy-absorption materials.


Author(s):  
Zilong Wei ◽  
Chen Shen ◽  
Zili Li ◽  
Rolf Dollevoet

Irregularities in the geometry and flexibility of railway crossings cause large impact forces, leading to rapid degradation of crossings. Precise stress and strain analysis is essential for understanding the behavior of dynamic frictional contact and the related failures at crossings. In this research, the wear and plastic deformation because of wheel–rail impact at railway crossings was investigated using the finite-element (FE) method. The simulated dynamic response was verified through comparisons with in situ axle box acceleration (ABA) measurements. Our focus was on the contact solution, taking account not only of the dynamic contact force but also the adhesion–slip regions, shear traction, and microslip. The contact solution was then used to calculate the plastic deformation and frictional work. The results suggest that the normal and tangential contact forces on the wing rail and crossing nose are out-of-sync during the impact, and that the maximum values of both the plastic deformation and frictional work at the crossing nose occur during two-point contact stage rather than, as widely believed, at the moment of maximum normal contact force. These findings could contribute to the analysis of nonproportional loading in the materials and lead to a deeper understanding of the damage mechanisms. The model provides a tool for both damage analysis and structure optimization of crossings.


Author(s):  
Paulo Flores ◽  
Hamid M. Lankarani

A general methodology for the dynamic modeling and analysis of planar multibody systems with multiple clearance joints is presented. The inter-connecting body components that constitute a real joint are modeled as colliding bodies, which dynamic behaviors are influenced by geometric, physical and mechanical properties of the contacting surfaces. A continuous contact force model, based on the elastic Hertz theory, together with a dissipative term, is used to evaluate the intra-joint contact forces. The incorporation of the friction, based on the classical Coulomb’s friction law, is also included. The suitable contact force models are embedded into the dynamic equations of motion for the multibody system. A simple mechanical system with multiple clearance joints is used to demonstrate the accuracy and efficiency of the presented approach and to discuss the main assumptions and procedures adopted. The effects of single versus multiple clearance joints are discussed.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Gengxiang Wang ◽  
Hongzhao Liu ◽  
Peisheng Deng

The influence of the spherical joint with clearance caused by wear on the dynamics performance of spatial multibody system is predicted based on the Archard's wear model and equations of motion of multibody systems. First, the function of contact deformation and load acting on the spherical joint with clearance is derived based on the improved Winkler elastic foundation model and Hertz quadratic pressure distribution assumption. On this basis, considering the influence of clearance size and wear state on the contact stiffness between spherical joint elements, an improved contact force model is proposed by Lankarani–Nikravesh contact force model and improved stiffness coefficient that is the slope of the function of contact deformation and load. Second, due to the complexity for that wear impacts on the surface topography of contact bodies, an approximate calculation method of contact area with respect to the clearance spherical joint is provided for simplifying the computational process of contact pressure in the Archard's wear model. Subsequently, the contact pressure between contact bodies is calculated by the improved contact force model and approximate contact area (ICFM–ACA), which is verified via finite element method (FEM). Moreover, the dynamics model of spatial four bar mechanism considering spherical joint with clearance caused by wear is formulated using equations of motion of multibody systems. Finally, the wear depth of spherical joint with clearance is predicted via two different kinds of contact pressure based on the Archard's wear model (one is from the ICFM–ACA and the other is from FEM), respectively. The numerical simulation results show that the improved contact force model and proposed approximate contact area are correctness and validity for predicting wear in the spherical joint with clearance. Simultaneously, the effect of the spherical joint with clearance caused by wear on the dynamics performance of spatial four bar mechanism is analyzed.


Author(s):  
M Machado ◽  
P Flores ◽  
J Ambrosio ◽  
A Completo

The goal of this work is to study the influence of the contact force model, contact geometry, and contact material properties on the dynamic response of a human knee joint model. For this purpose, a multibody knee model composed by two rigid bodies, the femur and the tibia, and four non-linear spring elements that represent the main knee ligaments, is considered. The contact force models used were the Hertz, the Hunt–Crossley, and the Lankarani–Nikravesh approaches. Results obtained from computational simulations show that Hertz law is less suitable to describe the dynamic response of the cartilage contact, because this pure elastic model does not account for the viscoelastic nature of the human articulations. Since knee can exhibit conformal and non-conformal contact scenarios, three different geometrical configurations for femur–tibia contact are considered, that is convex–convex sphere contact, convex–concave sphere contact, and convex sphere–plane contact. The highest level of contact forces is obtained for the case of convex–convex sphere contact. As far as the influence of the material contact properties is concerned, the dynamic response of a healthy and natural knee is analysed and compared with three pathological and two artificial knee models. The obtained results demonstrate that the presence of the cartilage reduces significantly the knee contact forces.


Author(s):  
Sony Cheriyan ◽  
Paulo Flores ◽  
Hamid M. Lankarani

The main objective of this work is to present a computational and experimental study on the contact forces developed in revolute clearance joints. For this purpose, a well-known slider-crank mechanism with a revolute clearance joint between the connecting rod and slider is utilized. The intra-joint contact forces that generated at this clearance joints are computed by considered several different elastic and dissipative approaches, namely those based on the Hertz contact theory and the ESDU tribology-based for cylindrical contacts, along with a hysteresis-type dissipative damping. The normal contact force is augmented with the dry Coulomb’s friction force. An experimental apparatus is use to obtained some experimental data in order to verify and validate the computational models. From the outcomes reported in this paper, it is concluded that the selection of the appropriate contact force model with proper dissipative damping plays a significant role in the dynamic response of mechanical systems involving contact events at low or moderate impact velocities.


2017 ◽  
Vol 33 (2) ◽  
pp. 171-175 ◽  
Author(s):  
Joaquin Barrios ◽  
John Willson

Medial tibiofemoral joint contact forces can be estimated using musculoskeletal models. To assess change in these forces that accompany load-modifying interventions, minimum detectable change (MDC) thresholds must be established. The primary study purpose was to derive MDCs for medial tibiofemoral peak force and force impulse during walking. The secondary purpose was to identify the proportions of individuals exhibiting reductions greater than these MDCs when walking with lateral foot wedging. Eight healthy individuals provided 3-dimensional gait data over 3 test sessions to serve as inputs for an inverse dynamics-driven medial tibiofemoral contact force model, from which MDCs for peak force and impulse were derived. The MDC was 0.246 BW (8.7%) for peak force and 0.0385 BW∙s (3.7%) for impulse. Then, 25 healthy individuals provided gait data by walking with and without 6° laterally wedged foot orthoses, and the proportion of individuals exhibiting changes in medial tibiofemoral contact peak force and impulse values exceeding the MDC threshold was determined. For impulse and peak force, 52% and 4% of participants exhibited a decrease exceeding the MDC, respectively. In summary, medial tibiofemoral contact force MDCs were derived, with impulse showing greater sensitivity than peak force to the effects of a biomechanical intervention.


Sign in / Sign up

Export Citation Format

Share Document