Effect of relative spacing on wake turbulence under wave-current flow

2018 ◽  
Vol 45 (6) ◽  
pp. 489-503
Author(s):  
Krishnendu Barman ◽  
Sayahnya Roy ◽  
Koustuv Debnath

This paper reports the findings of an experimental study carried out in a laboratory flume to investigate the interaction of a surface wave with a unidirectional current over submerged tandem (bed mounted two in-line) hemispheres. The pitch-to-height ratio of the hemispheres was varied to spawn d-type (L/d = 2), intermediate (L/d = 4), and k-type (L/d = 8) relative spacing. The observations are focused on the changes induced in the mean velocity, turbulence intensity, Reynolds shear stress, and the frictional contributions of burst-sweep cycle to shear stress due to superposition of surface waves on the ambient flow. The consequences from the present experiment showed that the stream-wise velocity fluctuation follows the normal Gaussian distribution at upstream of hemispheres. Further, the joint probability density function showed that the superimposed surface waves on the current are capable of modulating the turbulent eddies with a larger band of energy and frequency spectrum compared to current-only flow.

1977 ◽  
Vol 82 (3) ◽  
pp. 507-528 ◽  
Author(s):  
Hugh W. Coleman ◽  
Robert J. Moffat ◽  
William M. Kays

The behaviour of a fully rough turbulent boundary layer subjected to favourable pressure gradients both with and without blowing was investigated experimentally using a porous test surface composed of densely packed spheres of uniform size. Measurements of profiles of mean velocity and the components of the Reynolds-stress tensor are reported for both unblown and blown layers. Skin-friction coefficients were determined from measurements of the Reynolds shear stress and mean velocity.An appropriate acceleration parameterKrfor fully rough layers is defined which is dependent on a characteristic roughness dimension but independent of molecular viscosity. For a constant blowing fractionFgreater than or equal to zero, the fully rough turbulent boundary layer reaches an equilibrium state whenKris held constant. Profiles of the mean velocity and the components of the Reynolds-stress tensor are then similar in the flow direction and the skin-friction coefficient, momentum thickness, boundary-layer shape factor and the Clauser shape factor and pressure-gradient parameter all become constant.Acceleration of a fully rough layer decreases the normalized turbulent kinetic energy and makes the turbulence field much less isotropic in the inner region (forFequal to zero) compared with zero-pressure-gradient fully rough layers. The values of the Reynolds-shear-stress correlation coefficients, however, are unaffected by acceleration or blowing and are identical with values previously reported for smooth-wall and zero-pressure-gradient rough-wall flows. Increasing values of the roughness Reynolds number with acceleration indicate that the fully rough layer does not tend towards the transitionally rough or smooth-wall state when accelerated.


2018 ◽  
Vol 857 ◽  
pp. 345-373 ◽  
Author(s):  
Davide Gatti ◽  
Andrea Cimarelli ◽  
Yosuke Hasegawa ◽  
Bettina Frohnapfel ◽  
Maurizio Quadrio

This paper addresses the integral energy fluxes in natural and controlled turbulent channel flows, where active skin-friction drag reduction techniques allow a more efficient use of the available power. We study whether the increased efficiency shows any general trend in how energy is dissipated by the mean velocity field (mean dissipation) and by the fluctuating velocity field (turbulent dissipation). Direct numerical simulations (DNS) of different control strategies are performed at constant power input (CPI), so that at statistical equilibrium, each flow (either uncontrolled or controlled by different means) has the same power input, hence the same global energy flux and, by definition, the same total energy dissipation rate. The simulations reveal that changes in mean and turbulent energy dissipation rates can be of either sign in a successfully controlled flow. A quantitative description of these changes is made possible by a new decomposition of the total dissipation, stemming from an extended Reynolds decomposition, where the mean velocity is split into a laminar component and a deviation from it. Thanks to the analytical expressions of the laminar quantities, exact relationships are derived that link the achieved flow rate increase and all energy fluxes in the flow system with two wall-normal integrals of the Reynolds shear stress and the Reynolds number. The dependence of the energy fluxes on the Reynolds number is elucidated with a simple model in which the control-dependent changes of the Reynolds shear stress are accounted for via a modification of the mean velocity profile. The physical meaning of the energy fluxes stemming from the new decomposition unveils their inter-relations and connection to flow control, so that a clear target for flow control can be identified.


2007 ◽  
Vol 129 (8) ◽  
pp. 984-990 ◽  
Author(s):  
Mika Piirto ◽  
Aku Karvinen ◽  
Hannu Ahlstedt ◽  
Pentti Saarenrinne ◽  
Reijo Karvinen

Measurements with both two-dimensional (2D) two-component and three-component stereo particle image velocimetry (PIV) and computation in 2D and three-dimensional (3D) using Reynolds stress turbulence model with commercial code are carried out in a square duct backward-facing step (BFS) in a turbulent water flow at three Reynolds numbers of about 12,000, 21,000, and 55,000 based on the step height h and the inlet streamwise maximum mean velocity U0. The reattachment locations measured at a distance of Δy=0.0322h from the wall are 5.3h, 5.6h, and 5.7h, respectively. The inlet flow condition is fully developed duct flow before the step change with the expansion ratio of 1.2. PIV results show that the mean velocity, root mean square (rms) velocity profiles, and Reynolds shear stress profiles in all the experimental flow cases are almost identical in the separated shear-layer region when they are nondimensionalized by U0. The sidewall effect of the square BFS flow is analyzed by comparing the experimental statistics with direct numerical simulation (DNS) and Reynolds stress model (RSM) data. For this purpose, the simulation is carried out for both 2D BFS and for square BFS having the same geometry in the 3D case as the experimental case at the lowest Reynolds number. A clear difference is observed in rms and Reynolds shear stress profiles between square BFS experimental results and DNS results in 2D channel in the spanwise direction. The spanwise rms velocity difference is about 30%, with experimental tests showing higher values than DNS, while in contrast, turbulence intensities in streamwise and vertical directions show slightly lower values than DNS. However, with the modeling, the turbulence statistical differences between 2D and 3D RSM cases are very modest. The square BFS indicates 0.5h–1.5h smaller reattachment distances than the reattachment lengths of 2D flow cases.


Author(s):  
Takuma Katayama ◽  
Shinsuke Mochizuki

The present experiment focuses on the vorticity diffusion in a stronger wall jet managed by a three-dimensional flat plate wing in the outer layer. Measurement of the fluctuating velocities and vorticity correlation has been carried out with 4-wire vorticity probe. The turbulent vorticity diffusion due to the large scale eddies in the outer layer is quantitatively examined by using the 4-wire vorticity probe. Quantitative relationship between vortex structure and Reynolds shear stress is revealed by means of directly measured experimental evidence which explains vorticity diffusion process and influence of the manipulating wing. It is expected that the three-dimensional outer layer manipulator contributes to keep convex profile of the mean velocity, namely, suppression of the turbulent diffusion and entrainment.


1998 ◽  
Vol 367 ◽  
pp. 67-105 ◽  
Author(s):  
STEPHEN A. ARNETTE ◽  
MO SAMIMY ◽  
GREGORY S. ELLIOTT

A fully developed Mach 3 turbulent boundary layer subjected to four expansion regions (centred and gradual expansions of 7° and 14°) was investigated with laser Doppler velocimetry. Measurements were acquired in the incoming flat-plate boundary layer and to s/δ≃20 downstream of the expansions. While mean velocity profiles exhibit significant progress towards recovery by the most downstream measurements, the turbulence structure remains far from equilibrium. Comparisons of computed (method of characteristics) and measured velocity profiles indicate that the post-expansion flow evolution is largely inviscid for approximately 10δ. Turbulence levels decrease across the expansion, and the reductions increase in severity as the wall is approached. Downstream of the 14° expansions, the reductions are more severe and reverse transition is indicated by sharp reductions in turbulent kinetic energy levels and a change in sign of the Reynolds shear stress. Dimensionless parameters such as anisotropy and shear stress correlation coefficient highlight the complex evolution of the post-expansion boundary layer. An examination of the compressible vorticity transport equation and estimates of the perturbation impulses attributable to streamline curvature, acceleration, and dilatation both confirm dilatation to be the primary stabilizer. However, the dilatation impulse increases only slightly for the 14° expansions, so the dramatic differences downstream of the 7° and 14° expansions indicate nonlinear boundary layer response. Differences attributable to the varied radii of surface curvature are fleeting for the 7° expansions, but persist through the spatial extent of the measurements for the 14° expansions.


2015 ◽  
Vol 45 (12) ◽  
pp. 2869-2895 ◽  
Author(s):  
Nityanand Sinha ◽  
Andres E. Tejada-Martínez ◽  
Cigdem Akan ◽  
Chester E. Grosch

AbstractInteraction between the wind-driven shear current and the Stokes drift velocity induced by surface gravity waves gives rise to Langmuir turbulence in the upper ocean. Langmuir turbulence consists of Langmuir circulation (LC) characterized by a wide range of scales. In unstratified shallow water, the largest scales of Langmuir turbulence engulf the entire water column and thus are referred to as full-depth LC. Large-eddy simulations (LESs) of Langmuir turbulence with full-depth LC in a wind-driven shear current have revealed that vertical mixing due to LC erodes the bottom log-law velocity profile, inducing a profile resembling a wake law. Furthermore, in the interior of the water column, two sources of Reynolds shear stress, turbulent (nonlocal) transport and local Stokes drift shear production, can combine to lead to negative mean velocity shear. Meanwhile, near the surface, Stokes drift shear serves to intensify small-scale eddies leading to enhanced vertical mixing and disruption of the surface log law. A K-profile parameterization (KPP) of the Reynolds shear stress comprising local and nonlocal components is introduced, capturing these basic mechanisms by which Langmuir turbulence in unstratified shallow water impacts the vertical mixing of momentum. Single-water-column, Reynolds-averaged Navier–Stokes simulations with the new parameterization are presented, showing good agreement with LES in terms of mean velocity. Results show that coefficients in the KPP may be parameterized based on attributes of the full-depth LC.


2016 ◽  
Vol 801 ◽  
pp. 670-703 ◽  
Author(s):  
Hangjian Ling ◽  
Siddarth Srinivasan ◽  
Kevin Golovin ◽  
Gareth H. McKinley ◽  
Anish Tuteja ◽  
...  

Digital holographic microscopy is used for characterizing the profiles of mean velocity, viscous and Reynolds shear stresses, as well as turbulence level in the inner part of turbulent boundary layers over several super-hydrophobic surfaces (SHSs) with varying roughness/texture characteristics. The friction Reynolds numbers vary from 693 to 4496, and the normalized root mean square values of roughness $(k_{rms}^{+})$ vary from 0.43 to 3.28. The wall shear stress is estimated from the sum of the viscous and Reynolds shear stress at the top of roughness elements and the slip velocity is obtained from the mean profile at the same elevation. For flow over SHSs with $k_{rms}^{+}<1$, drag reduction and an upward shift of the mean velocity profile occur, along with a mild increase in turbulence in the inner part of the boundary layer. As the roughness increases above $k_{rms}^{+}\sim 1$, the flow over the SHSs transitions from drag reduction, where the viscous stress dominates, to drag increase where the Reynolds shear stress becomes the primary contributor. For the present maximum value of $k_{rms}^{+}=3.28$, the inner region exhibits the characteristics of a rough wall boundary layer, including elevated wall friction and turbulence as well as a downward shift in the mean velocity profile. Increasing the pressure in the test facility to a level that compresses the air layer on the SHSs and exposes the protruding roughness elements reduces the extent of drag reduction. Aligning the roughness elements in the streamwise direction increases the drag reduction. For SHSs where the roughness effect is not dominant ($k_{rms}^{+}<1$), the present measurements confirm previous theoretical predictions of the relationships between drag reduction and slip velocity, allowing for both spanwise and streamwise slip contributions.


Author(s):  
N. Ahmad ◽  
R. N. Parthasarathy

Particle Image Velocimetry (PIV) measurements were made in a fully-developed turbulent channel flow. The channel test section was 1 ft wide and 1 inch in height and was constructed out of plexiglass. One wall of the test section was made removable. Four walls were used: a plexiglass smooth wall, and three hydrophobic walls: (i) a lotus paint coated plexiglass wall, (ii) a treated aluminum sheet attached to the plexiglass wall and (iii) a treated rough surface attached to the plexiglass wall. The bulk velocity was held constant to yield a Reynolds number (based on the channel half-height) of 5,500. Several images were averaged to obtain mean velocity and Reynolds shear stress and turbulence kinetic energy measurements. It was found that the mean velocities in the near-wall region were higher for the lotus-paint coated surface flow and the treated rough surface flow than the flows with the other two surfaces. The friction velocity estimated from the Reynolds shear stress measurements was significantly lower for these two flows as well. The reduction in the wall shear stress in these flows is attributed to the finite slip that occurs at the hydrophobic surfaces.


Author(s):  
Lei Wang ◽  
Mirko Salewski ◽  
Bengt Sunde´n

Particle image velocimetry measurements are performed in a channel with periodic ribs on one wall. We investigate the flow around two different rib configurations: solid and perforated ribs with a slit. The ribs obstruct the channel by 20% of its height and are arranged 10 rib heights apart. For the perforated ribs, the slit height is 20% of the rib height, and the open-area ratio is 16%. We discuss the flow in terms of mean velocity, streamlines, vorticity, turbulence intensity, and Reynolds shear stress. We find that the recirculation bubbles after the perforated ribs are significantly smaller than those after the solid ribs. The reattachment length after perforated ribs is smaller by about 45% compared with the solid ribs. In addition, the Reynolds shear stresses around the perforated ribs are significantly smaller than in the solid rib case, leading to a reduction of the pressure loss in the perforated rib case.


Sign in / Sign up

Export Citation Format

Share Document