An Analysis of Quality Liability Insurance for Prefabricated Components Using Evolutionary Game Theory

Author(s):  
Yan Liu ◽  
Chenyao Lv ◽  
Hong Xian Li ◽  
Yan Li ◽  
Zhen Lei ◽  
...  

Managing quality risks of prefabricated components is one of the challenges for prefabricated construction. The Quality Liability Insurance for Prefabricated Components (QLIPC) is an effective approach to transfer such risks; however, limited research has been conducted regarding the development of QLIPC. This study introduces an Evolutionary Game Theory (EGT)-based approach incorporating decisions from both the government and insurance companies. In the EGT model, a payoff matrix under disparate strategies is constructed, and the evolutionary stable strategies (ESS) are deduced. The simulation calculation is then carried out by MATLAB using sample virtual data to demonstrate the analysis. The results show that the government should act as the game promoter because the QLIPC can reduce governance cost and has significant social benefits. This research contributes a theoretical framework to analyze the QLIPC development using the EGT theory, and it could help the government to make long-term strategies for developing the QLIPC market.

2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Zhu Bai ◽  
Mingxia Huang ◽  
Shuai Bian ◽  
Huandong Wu

The emergence of online car-hailing service provides an innovative approach to vehicle booking but has negatively influenced the taxi industry in China. This paper modeled taxi service mode choice based on evolutionary game theory (EGT). The modes included the dispatching and online car-hailing modes. We constructed an EGT framework, including determining the strategies and the payoff matrix. We introduced different behaviors, including taxi company management, driver operation, and passenger choice. This allowed us to model the impact of these behaviors on the evolving process of service mode choice. The results show that adjustments in taxi company, driver, and passenger behaviors impact the evolutionary path and convergence speed of our evolutionary game model. However, it also reveals that, regardless of adjustments, the stable states in the game model remain unchanged. The conclusion provides a basis for studying taxi system operation and management.


2014 ◽  
Author(s):  
Jeremy Van Cleve

The evolution of social traits remains one of the most fascinating and feisty topics in evolutionary biology even after half a century of theoretical research. W. D. Hamilton shaped much of the field initially with his 1964 papers that laid out the foundation for understanding the effect of genetic relatedness on the evolution of social behavior. Early theoretical investigations revealed two critical assumptions required for Hamilton's rule to hold in dynamical models: weak selection and additive genetic interactions. However, only recently have analytical approaches from population genetics and evolutionary game theory developed sufficiently so that social evolution can be studied under the joint action of selection, mutation, and genetic drift. We review how these approaches suggest two timescales for evolution under weak mutation: (i) a short-term timescale where evolution occurs between a finite set of alleles, and (ii) a long-term timescale where a continuum of alleles are possible and populations evolve continuously from one monomorphic trait to another. We show how Hamilton's rule emerges from the short-term analysis under additivity and how non-additive genetic interactions can be accounted for more generally. This short-term approach reproduces, synthesizes, and generalizes many previous results including the one-third law from evolutionary game theory and risk dominance from economic game theory. Using the long-term approach, we illustrate how trait evolution can be described with a diffusion equation that is a stochastic analogue of the canonical equation of adaptive dynamics. Peaks in the stationary distribution of the diffusion capture classic notions of convergence stability from evolutionary game theory and generally depend on the additive genetic interactions inherent in Hamilton's rule. Surprisingly, the peaks of the long-term stationary distribution can predict the effects of simple kinds of non-additive interactions. Additionally, the peaks capture both weak and strong effects of social payoffs in a manner difficult to replicate with the short-term approach. Together, the results from the short and long-term approaches suggest both how Hamilton's insight may be robust in unexpected ways and how current analytical approaches can expand our understanding of social evolution far beyond Hamilton's original work.


2021 ◽  
Author(s):  
Yuxun Zhou ◽  
Rahman Mohammad Mafizur ◽  
Khanam Rasheda ◽  
Brad R. Taylor

Abstract Purpose – Based on the fact that punishment and subsidy mechanisms affect the anti-epidemic incentives of major participants in a society, the issue of this paper is how the penalty and subsidy mechanisms affect the decisions of governments, businesses, and consumers during Corona Virus Disease 2019. The goal of this paper is to understand strategic selections from governments, enterprises, and consumers to maximize their respective utility during Corona Virus Disease 2019, and the impact of penalty and subsidy mechanism on the decisions of governments, businesses, and consumers.Design/Methodology/approach - This paper proposes a tripartite evolutionary game theory, involving governments, businesses, and consumers, to firstly analyze the evolutionary stable strategies and to secondly analyze the impact of penalty and subsidy mechanism on their strategy selection during Corona Virus Disease 2019. Thirdly, this paper uses numerical analysis to simulate the strategy formation process of governments, enterprises, and consumers in Japan and India based on their different penalty and subsidy mechanism.Findings – This paper suggests that there are four evolutionarily stable strategies corresponding to the actual anti-epidemic situations of different countries in reality. We find that different subsidy and penalty mechanisms lead to different evolutionary stable strategies. If governments, enterprises, and consumers fighting the pandemic together, the government need to set a low subsidy mechanism and a high penalty mechanism.Originality/value - There are some limitations in the literature, such as long term strategies, rational hypothesis, and convergence path analysis in higher dimensional evolutionary game theory. This paper fills the gap and extends the theory of COVID-19 management theory. Firstly, this paper has important practical significance. This paper finds out the long-term equilibrium strategies of governments, businesses, and consumers under Corona Virus Disease 2019, which can provide an important theoretical and decision-making basis for pandemic prevention and control. Secondly, our paper extends the analytical paradigm of the tripartite evolutionary game theory. We extend the analysis of the dynamic process from the initial point to the convergence point and make a theoretical contribution to the development of high-dimensional evolutionary game theory.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 18514-18521 ◽  
Author(s):  
Lijuan Yang ◽  
Yu Zhang ◽  
Raymond Chiong ◽  
Sandeep Dhakal ◽  
Qiangqiang Qi

2020 ◽  
Vol 103 (sp1) ◽  
pp. 117
Author(s):  
Liling Lin ◽  
Chaorong Huang ◽  
Linfeng Zhao

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Tongyao Feng ◽  
Shuangliang Tai ◽  
Chengshuang Sun ◽  
Qingpeng Man

Good cooperation mechanism is an important guarantee for the advancement of industrialization construction. To strengthen the partnership between producers, we analyze the behavior evolution trend of both parties using an evolutionary game theory. Based on the original model, the mechanism of coordination and cooperation between prefabricated producers is explained under the condition of punishment and incentive. The results indicate that stable evolutionary strategies exist under both cooperation and noncooperation, and the evolutionary results are influenced by the initial proportion of both decision-making processes. The government can support the production enterprises to establish a solid partnership through effective punishment and incentive mechanisms to reduce the initial cost in the supply chain of prefabricated construction, resulting in a win-win situation.


Author(s):  
Cristina Bicchieri ◽  
Giacomo Sillari

Game theory aims to understand situations in which decision-makers interact strategically. Chess is an example, as are firms competing for business, politicians competing for votes, animals fighting over prey, bidders competing in auctions, threats and punishments in long-term relationships, and so on. In such situations, the outcome depends on what the parties do jointly. Decision-makers may be people, organizations, animals, or even genes. In this chapter, the authors review fundamental notions of game theory and their application to philosophy of science. In particular, Section 1 looks at games of complete information through normal and extensive form representations, introduce the notion of Nash equilibrium and its refinements. Section 2 touches on epistemic foundations and correlated equilibrium, and Section 3 examines repeated games and their importance for the analysis of altruism and cooperation. Section 4 deals with evolutionary game theory.


2007 ◽  
Vol 2007 ◽  
pp. 1-5
Author(s):  
H. Fort

Cooperation, both intraspecific and interspecific, is a well-documented phenomenon in nature that is not well understood. Evolutionary game theory is a powerful tool to approach this problem. However, it has important limitations. First, very often it is not obvious which game is more appropriate to use. Second, in general, identical payoff matrices are assumed for all players, a situation that is highly unlikely in nature. Third, slight changes in these payoff values can dramatically alter the outcomes. Here, I use an evolutionary spatial model in which players do not have a universal payoff matrix, so no payoff parameters are required. Instead, each is equipped with random values for the payoffs, fulfilling the constraints that define the game(s). These payoff matrices evolve by natural selection. Two versions of this model are studied. First is a simpler one, with just one evolving payoff. Second is the “full” version, with all the four payoffs evolving. The fraction of cooperator agents converges in both versions to nonzero values. In the case of the full version, the initial heterogeneity disappears and the selected game is the “Stag Hunt.”


Sign in / Sign up

Export Citation Format

Share Document