scholarly journals An Upper Jurassic ichthyosaur (Ichthyosauria: Ophthalmosauridae) from the Bowser Basin, British Columbia

2016 ◽  
Vol 53 (1) ◽  
pp. 34-40
Author(s):  
Robin L. Sissons ◽  
Michael W. Caldwell ◽  
Carol A. Evenchick ◽  
Donald B. Brinkman ◽  
Matthew J. Vavrek

Although the Jurassic was a period of high diversity in ichthyosaurs, only a small number of specimens have been recorded from Canada to date. We describe here a new occurrence of an ophthalmosaurid ichthyosaur from a shallow marine depositional environment within the Bowser Basin of northern British Columbia. Based on vertebral diameters and the size of the humerus, the ichthyosaur was relatively large compared to other contemporaneous forms, yet possessed teeth that were small for its body size. As well, the height to length ratio of the preserved vertebrae suggests it may have had a more elongate, less regionalized body shape. Although indeterminate at a generic level, the presence of Late Jurassic ichthyosaurs in nearshore waters of northwestern North America further demonstrates their cosmopolitan distribution.

Fossil Record ◽  
1999 ◽  
Vol 2 (1) ◽  
pp. 25-61 ◽  
Author(s):  
W.-D. Heinrich

Tendaguru is one of the most important dinosaur localities in Africa. The Tendaguru Beds have produced a diverse Late Jurassic (Kimmeridgian to Tithonian) dinosaur assemblage, including sauropods (<i>Brachiosaurus, Barosaurus, Dicraeosaurus, Janenschia</i>), theropods (e.g., <i>Elaphrosaurus, Ceratosaurus, Allosaurus</i>), and ornithischians (<i>Kentrosaurus, Dryosaurus</i>). Contrary to the well studied skeletal anatomy of the Tendaguru dinosaurs, the available taphonomic information is rather limited, and a generally accepted taphonomic model has not yet been established. Assessment of unpublished excavation sketches by the German Tendaguru expedition (1909–1913) document bone assemblages of sauropod and ornithischian dinosaurs from the Middle Saurian Bed, Upper Saurian Bed, and the Transitional Sands above the <i>Trigonia smeei</i> Bed, and shed some light on the taphonomy of the Tendaguru dinosaurs. Stages of disarticulation range from incomplete skeletons to solitary bones, and strongly argue for carcass decay and post-mortem transport prior to burial. The sauropod bone accumulations are dominated by adult individuals, and juveniles are rare or missing. The occurrence of bones in different superimposed dinosaur-bearing horizons indicates that skeletal remains were accumulated over a long time span during the Late Jurassic, and the majority of the bone accumulations are probably attritional. These accumulations are likely to have resulted from long-term bone imput due to normal mortality events caused by starvation, seasonal drought, disease, old age and weakness. The depositional environment of the Middle and Upper Saurian Bed was mainly limnic to brackish in origin, while the palaeoenvironment of the Transitional Sands was marginal marine. <br><br> Tendaguru zählt zu den bedeutendsten Dinosaurier-Lagerstätten Afrikas. Aus den Tendaguru-Schichten sind zahlreiche Skelettreste von Sauropoden (<i>Brachiosaurus, Barosaurus, Dicraeosaurus, Janenschia</i>), Theropoden (z.B. <i>Elaphrosaurus, Ceratosaurus, Allosaurus</i>) und Ornithischiern (<i>Kentrosaurus, Dryosaurus</i>) geborgen worden. Sie stammen aus der späten Jura-Zeit (Kimmeridge — Tithon). Während der Skelettbau der Tendagurusaurier gut untersucht ist, wirft die Taphonomie des Sauriervorkommens von Tendaguru noch immer Fragen auf. Unklar ist bislang, wie die enormen Anreicherungen von Dinosaurierknochen in den Tendaguru-Schichten zustandekamen. Unveröffentlichte Grabungsskizzen der Deutschen Tendaguru Expedition (1909–1913) erweitern unsere Kenntnisse über die Taphonomie der Tendagurusaurier. In den ausgewerteten Grabungsskizzen sind Knochenansammlungen von Sauropoden und Ornithischiern aus dem Mittleren und Oberen Sauriermergel sowie aus den Übergangsschichten über der <i>Trigonia smeei</i>-Schicht dokumentiert. Die Lage und der Erhaltungszustand der Funde lassen auf erheblichen Zerfall der Kadaver und post-mortalen Transport von Skelettelementen vor der Einbettung schließen. Das Vorkommen von Saurierknochen in mehreren übereinanderliegenden Profilabschnitten der Tendaguru-Schichten zeigt, daß Skelettreste während der späten Jura-Zeit über einen längeren Zeitraum hinweg akkumuliert wurden. Die Ansammlungen von Skelettresten gehen wahrscheinlich auf „normale” Sterbe-Ereignisse zurück, wie z. B. Verhungern, Verdursten, Kankheit, Altersschwäche und jahreszeitliche Dürre. Als Ablagerungsraum der Mittleren und Oberen Saurierschicht kommt ein küstennaher limnischer, zeitweise wohl auch brackischer Küstenstreifen in Betracht. Die knochenführenden Übergangsschichten unter- und oberhalb der Saurierschichten sind randlich marine Ablagerungen. <br><br> doi:<a href="http://dx.doi.org/10.1002/mmng.1999.4860020102" target="_blank">10.1002/mmng.1999.4860020102</a>


GeoArabia ◽  
2013 ◽  
Vol 18 (1) ◽  
pp. 57-92
Author(s):  
Geraint Wyn Hughes

ABSTRACT Palaeoenvironmental interpretation of Permian and Jurassic intertidal to very shallow-marine carbonates is difficult where typical shallow-marine microfossils are either absent or sparse. A collection of microfossils originally considered as “microproblematica” because of their uncertain biological affinities are, however, often present. These include species of Aeolisaccus, Gakhumella, Prethocoprolithus, Thaumatoporella, Favreina and Terebella. Observations of their vertical distribution and relationship with carbonate fabrics reveal their environmental preferences, and these contribute to palaeoenvironmental interpretation within a spectrum of very shallow-marine settings that previously precluded refinement. The recognition of high-frequency depositional cycles and definition of cryptic reservoir layering in such shallow to marginal-marine carbonates is now facilitated by the use of these microfossils from the Khuff, Hanifa, Jubaila, Arab and Hith formations. Aeolisaccus dunningtoni is interpreted as either a fossilised cyanobacterial tube or possible foraminifera of Early Permian to Late Jurassic age. It is well represented within mudstones, wackestones and packstones of supratidal flats to very shallow intertidal palaeoenvironments with occasional freshwater influence. The microbialitic Gakhumella cf. huberi is locally present in these Upper Jurassic intertidal to very shallow-marine bioconstructions. Prethocoprolithus centripetalus is a faecal ribbon, considered to be of mollusk origin, within shallow subtidal grainstones and packstones. Thaumatoporella parvovesiculifera is considered a green alga that is typically found encrusting biocomponent fragments. It ranges from the Middle Triassic to Upper Cretaceous and is extensively present in intertidal, possibly hypersaline to shallow-marine, normal salinity lagoon grainstones and mud-lean packstones. Certain types of the distinctively canaliculate, microcoprolitic decapod crustacean faecal pellets, of the genus Favreina, are diagnostic of Late Jurassic intertidal to shallow subtidal conditions found within packstones. Terebella lapilloides is an agglutinated polychaete tube, typical of Upper Jurassic intertidal to shallow-marine packstones.


1989 ◽  
Vol 26 (5) ◽  
pp. 1001-1012 ◽  
Author(s):  
H. O. Cookenboo ◽  
R. M. Bustin

Three new formations of Late Jurassic and Early to mid-Cretaceous age are defined for a 2000 m thick section of Jura-Cretaceous rocks exposed in the north-central Bowser Basin. The Currier Formation (Oxfordian to Kimmeridgian or Tithonian) consists of 350–600 m of interbedded shales, siltstones, sandstones, coals, and carbonates. The McEvoy Formation (Barremian to as young as Albian) consists of 400–800 m of siltstones and shales with minor sandstones, thin coals, limestones, and conglomerates. The Devils Claw Formation (in part mid-Albian to Cenomanian) consists of 300–600 m of strata characterized by thick pebble and cobble conglomerates, with associated coarse sandstones and minor siltstones and shales.Two successive coarsening-upward sequences are identified in the study area. The first begins with Middle Jurassic marine shales of the Jackson unit grading upwards to coarser Upper Jurassic facies of the Currier Formation. The Currier Formation is conformably or unconformably overlain by siltstones and shales of the Lower Cretaceous McEvoy Formation, which forms the base of a second coarsening-upward sequence. Conglomerates appear with increasing frequency in the upper McEvoy and are the dominant lithology of the overlying Devils Claw Formation. The contact between the McEvoy and Devils Claw formations is gradational. The Devils Claw Formation forms the top of the second coarsening-upward sequence.The Currier Formation (Late Jurassic) is equivalent to the upper units of the Bowser Lake Group. The McEvoy and the Devils Claw formations (Barremian to Cenomanian) are coeval with the Skeena Group (Hauterivian? to Cenomanian). A probable unconformity separating the Upper Jurassic Currier Formation from the Lower Cretaceous McEvoy Formation correlates with a hiatus in the southern Bowser Basin and probably represents a regional unconformity.


2021 ◽  
Vol 8 (6) ◽  
pp. 210377
Author(s):  
Philip D. Mannion ◽  
Emanuel Tschopp ◽  
John A. Whitlock

Sauropod dinosaurs were an abundant and diverse component of the Upper Jurassic Morrison Formation of the USA, with 24 currently recognized species. However, some authors consider this high diversity to have been ecologically unviable and the validity of some species has been questioned, with suggestions that they represent growth series (ontogimorphs) of other species. Under this scenario, high sauropod diversity in the Late Jurassic of North America is greatly overestimated. One putative ontogimorph is the enigmatic diplodocoid Amphicoelias altus , which has been suggested to be synonymous with Diplodocus . Given that Amphicoelias was named first, it has priority and thus Diplodocus would become its junior synonym. Here, we provide a detailed re-description of A. altus in which we restrict it to the holotype individual and support its validity, based on three autapomorphies. Constraint analyses demonstrate that its phylogenetic position within Diplodocoidea is labile, but it seems unlikely that Amphicoelias is synonymous with Diplodocus . As such, our re-evaluation also leads us to retain Diplodocus as a distinct genus. There is no evidence to support the view that any of the currently recognized Morrison sauropod species are ontogimorphs. Available data indicate that sauropod anatomy did not dramatically alter once individuals approached maturity. Furthermore, subadult sauropod individuals are not prone to stemward slippage in phylogenetic analyses, casting doubt on the possibility that their taxonomic affinities are substantially misinterpreted. An anatomical feature can have both an ontogenetic and phylogenetic signature, but the former does not outweigh the latter when other characters overwhelmingly support the affinities of a taxon. Many Morrison Formation sauropods were spatio-temporally and/or ecologically separated from one another. Combined with the biases that cloud our reading of the fossil record, we contend that the number of sauropod dinosaur species in the Morrison Formation is currently likely to be underestimated, not overestimated.


2010 ◽  
pp. 37-51 ◽  
Author(s):  
Marko Ercegovac

This paper presents the first results of a palynological investigation of the Dinaride Ophiolite Belt - derived olistostrome melange at the northern slope of Moracka Kapa (Montenegro). The analysis of microfloral association provided a reconstruction of the Late Jurassic sedimentation conditions and depositional environment in the Moraca Kapa Unit. The samples (8) collected from the different parts of ophiolite matrix yielded palynomorph assemblages (fossil spores, pollen grains and dinoflagellates) of the Upper Jurassic age. The uppermost part of the ophiolite suite on the presented palynomorphs could also indicate the lowermost Lower Cretaceous. These palynological results provide a very interesting framework of these widespread, but poorly stratigraphically understood sediments. The paleoecological results suggest humid and subtropical conditions in the hinterland.


2020 ◽  
Vol 113 (1-2) ◽  
pp. 155-167
Author(s):  
Holger Gebhardt

AbstractForaminiferal assemblages from Upper Jurassic Klentnice beds in Lower Austria are described and analysed. The early late Tithonian assemblages comprise 75 foraminiferal taxa and simple diversities reach up to 31 taxa per sample, pointing to comparatively high diversity in general. The assemblages are dominated by lenticulinid forms (Genera Astacolus, Lenticulina, Saracenaria, Vaginulinopsis). Trocholina is the most common genus and present in all samples. Other frequent genera are Marssonella and Neobulimina. Co-occurrence of epifaunal (grazing) herbivores and epi- to deep infaunal active deposit feeders points to mixed assemblages from different sources and supports the concept of turbiditic systems as prevailing sedimentary regimes in the basinal setting.


Author(s):  
Lars Stemmerik ◽  
Gregers Dam ◽  
Nanna Noe-Nygaard ◽  
Stefan Piasecki ◽  
Finn Surlyk

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stemmerik, L., Dam, G., Noe-Nygaard, N., Piasecki, S., & Surlyk, F. (1998). Sequence stratigraphy of source and reservoir rocks in the Upper Permian and Jurassic of Jameson Land, East Greenland. Geology of Greenland Survey Bulletin, 180, 43-54. https://doi.org/10.34194/ggub.v180.5085 _______________ Approximately half of the hydrocarbons discovered in the North Atlantic petroleum provinces are found in sandstones of latest Triassic – Jurassic age with the Middle Jurassic Brent Group, and its correlatives, being the economically most important reservoir unit accounting for approximately 25% of the reserves. Hydrocarbons in these reservoirs are generated mainly from the Upper Jurassic Kimmeridge Clay and its correlatives with additional contributions from Middle Jurassic coal, Lower Jurassic marine shales and Devonian lacustrine shales. Equivalents to these deeply buried rocks crop out in the well-exposed sedimentary basins of East Greenland where more detailed studies are possible and these basins are frequently used for analogue studies (Fig. 1). Investigations in East Greenland have documented four major organic-rich shale units which are potential source rocks for hydrocarbons. They include marine shales of the Upper Permian Ravnefjeld Formation (Fig. 2), the Middle Jurassic Sortehat Formation and the Upper Jurassic Hareelv Formation (Fig. 4) and lacustrine shales of the uppermost Triassic – lowermost Jurassic Kap Stewart Group (Fig. 3; Surlyk et al. 1986b; Dam & Christiansen 1990; Christiansen et al. 1992, 1993; Dam et al. 1995; Krabbe 1996). Potential reservoir units include Upper Permian shallow marine platform and build-up carbonates of the Wegener Halvø Formation, lacustrine sandstones of the Rhaetian–Sinemurian Kap Stewart Group and marine sandstones of the Pliensbachian–Aalenian Neill Klinter Group, the Upper Bajocian – Callovian Pelion Formation and Upper Oxfordian – Kimmeridgian Hareelv Formation (Figs 2–4; Christiansen et al. 1992). The Jurassic sandstones of Jameson Land are well known as excellent analogues for hydrocarbon reservoirs in the northern North Sea and offshore mid-Norway. The best documented examples are the turbidite sands of the Hareelv Formation as an analogue for the Magnus oil field and the many Paleogene oil and gas fields, the shallow marine Pelion Formation as an analogue for the Brent Group in the Viking Graben and correlative Garn Group of the Norwegian Shelf, the Neill Klinter Group as an analogue for the Tilje, Ror, Ile and Not Formations and the Kap Stewart Group for the Åre Formation (Surlyk 1987, 1991; Dam & Surlyk 1995; Dam et al. 1995; Surlyk & Noe-Nygaard 1995; Engkilde & Surlyk in press). The presence of pre-Late Jurassic source rocks in Jameson Land suggests the presence of correlative source rocks offshore mid-Norway where the Upper Jurassic source rocks are not sufficiently deeply buried to generate hydrocarbons. The Upper Permian Ravnefjeld Formation in particular provides a useful source rock analogue both there and in more distant areas such as the Barents Sea. The present paper is a summary of a research project supported by the Danish Ministry of Environment and Energy (Piasecki et al. 1994). The aim of the project is to improve our understanding of the distribution of source and reservoir rocks by the application of sequence stratigraphy to the basin analysis. We have focused on the Upper Permian and uppermost Triassic– Jurassic successions where the presence of source and reservoir rocks are well documented from previous studies. Field work during the summer of 1993 included biostratigraphic, sedimentological and sequence stratigraphic studies of selected time slices and was supplemented by drilling of 11 shallow cores (Piasecki et al. 1994). The results so far arising from this work are collected in Piasecki et al. (1997), and the present summary highlights the petroleum-related implications.


2007 ◽  
Vol 85 (12) ◽  
pp. 1275-1285 ◽  
Author(s):  
Sebastián P. Luque ◽  
Edward H. Miller ◽  
John P.Y. Arnould ◽  
Magaly Chambellant ◽  
Christophe Guinet

Pre- and post-weaning functional demands on body size and shape of mammals are often in conflict, especially in species where weaning involves a change of habitat. Compared with long lactations, brief lactations are expected to be associated with fast rates of development and attainment of adult traits. We describe allometry and growth for several morphological traits in two closely related fur seal species with large differences in lactation duration at a sympatric site. Longitudinal data were collected from Antarctic ( Arctocephalus gazella (Peters, 1875); 120 d lactation) and subantarctic ( Arctocephalus tropicalis (Gray, 1872); 300 d lactation) fur seals. Body mass was similar in neonates of both species, but A. gazella neonates were longer, less voluminous, and had larger foreflippers. The species were similar in rate of preweaning growth in body mass, but growth rates of linear variables were faster for A. gazella pups. Consequently, neonatal differences in body shape increased over lactation, and A. gazella pups approached adult body shape faster than did A. tropicalis pups. Our results indicate that preweaning growth is associated with significant changes in body shape, involving the acquisition of a longer, more slender body with larger foreflippers in A. gazella. These differences suggest that A. gazella pups are physically more mature at approximately 100 d of age (close to weaning age) than A. tropicalis pups of the same age.


2018 ◽  
Vol 66 ◽  
pp. 21-46 ◽  
Author(s):  
Marco Marzola ◽  
Octávio Mateus ◽  
Jesper Milàn ◽  
Lars B. Clemmensen

This article presents a synthesis of Palaeozoic and Mesozoic fossil tetrapods from Greenland, including an updated review of the holotypes and a new photographic record of the main specimens. All fossil tetrapods found are from East Greenland, with at least 30 different known taxa: five stem tetrapods (Acanthostega gunnari, Ichthyostega eigili, I. stensioi, I. watsoni, and Ymeria denticulata) from the Late Devonian of the Aina Dal and Britta Dal Formations; four temnospondyl amphibians (Aquiloniferus kochi, Selenocara groenlandica, Stoschiosaurus nielseni, and Tupilakosaurus heilmani) from the Early Triassic of the Wordie Creek Group; two temnospondyls (Cyclotosaurus naraserluki and Gerrothorax cf. pulcherrimus), one testudinatan (cf. Proganochelys), two stagonolepids (Aetosaurus ferratus and Paratypothorax andressorum), the eudimorphodontid Arcticodactylus, undetermined archosaurs (phytosaurs and both sauropodomorph and theropod dinosaurs), the cynodont Mitredon cromptoni, and three mammals (Haramiyavia clemmenseni, Kuehneotherium, and cf. ?Brachyzostrodon), from the Late Triassic of the Fleming Fjord Formation; one plesiosaur from the Early Jurassic of the Kap Stewart Formation; one plesiosaur and one ichthyosaur from the Late Jurassic of the Kap Leslie Formation, plus a previously unreported Late Jurassic plesiosaur from Kronprins Christian Land. Moreover, fossil tetrapod trackways are known from the Late Carboniferous (morphotype Limnopus) of the Mesters Vig Formation and at least four different morphologies (such as the crocodylomorph Brachychirotherium, the auropodomorph Eosauropus and Evazoum, and the theropodian Grallator) associated to archosaurian trackmakers are known from the Late Triassic of the Fleming Fjord Formation. The presence of rich fossiliferous tetrapod sites in East Greenland is linked to the presence of well-exposed continental and shallow marine deposits with most finds in terrestrial deposits from the Late Devonian and the Late Triassic.


Sign in / Sign up

Export Citation Format

Share Document