New age constraints on magmatism and metamorphism in the Morin terrane (Grenville Province, Quebec)

Author(s):  
William H Peck ◽  
Matthew P Quinan

The Morin terrane is an allochthonous crustal block in the southwestern Grenville Province with a relatively poorly-constrained metamorphic history. In this part of the Grenville Province, some terranes were part of the ductile middle crust during the 1.09–1.02 Ga collision of Laurentia with the Amazon craton (the Ottawan phase of the Grenvillian orogeny), while other terranes were part of the orogen’s superstructure. New U-Pb geochronology suggests that the Morin terrane experienced granulite-facies metamorphism during the accretionary Shawinigan orogeny (1.19–1.14 Ga) and again during the Ottawan. Seven zircon samples from the 1.15 Ga Morin anorthosite suite were dated to confirm earlier age determinations, and Ottawan metamorphic rims (1.08–1.07 Ga) were observed in two samples. U-Pb dating of titanite in nine marble samples surrounding the Morin anorthosite suite yielded mixed ages spanning between the Shawinigan and Ottawan metamorphisms (n=7), and predominantly Ottawan ages (n=2). Our results show that Ottawan zircon growth and resetting of titanite ages is spatially heterogeneous in the Morin terrane. Ages with a predominantly Ottawan signature are recognized in the Morin shear zone, which deforms the eastern lobe of the anorthosite, in an overprinted skarn zone on the western side of the massif, and in the Labelle shear zone that marks its western boundary. In the rest of the Morin terrane titanite with Shawinigan ages appear to have been only partially reset during the Ottawan. Further work is needed to better understand the relationship between the character of Ottawan metamorphism and resetting in different parts of the Morin terrane.

2014 ◽  
Vol 51 (6) ◽  
pp. 558-572 ◽  
Author(s):  
Stephanie Lasalle ◽  
Greg Dunning ◽  
Aphrodite Indares

In situ U–Pb dating of monazite from granulite-facies anatectic aluminous gneisses of the hinterland of the Grenville Province (Manicouagan area) is used to constrain the age of metamorphic events. Matrix grains in these rocks show complex internal textures consistent with extensive corrosion and overgrowths which are attributed to partial dissolution of earlier monazite in anatectic melt followed by new growth during melt crystallization or subsequent fluid infiltration. The new monazite data show the following: (i) inherited “pre-Grevillian” ages up to ca. 1400 Ma in some rocks; (ii) “main Grenvillian” ages in the general range of ca. 1070–1020 Ma, with a variable spread in individual samples and a general cluster at 1070–1050 Ma; and (iii) “late Grenvillian” ages at ca. 1010–990 Ma, mostly restricted to backscatter electron (BSE)-bright rims of matrix grains. The wide age range of the main Grenvillian metamorphism suggests episodic growth of monazite over a wide time span, consistent with protracted residence of the host rocks under high-temperature conditions. The clusters in the age distribution likely represent major episodes of melt crystallization in the respective rocks, following the granulite-facies metamorphism. In contrast, the growth of the late Grenvillian monazite at ca. 1000 Ma is attributed to late fluid infiltration of the host rocks under greenschist-facies conditions, coeval with ultrapotassic magmatism. It is the first report of a late Grenvillian metamorphic overprint on granulite-facies mineral assemblages in the hinterland and is consistent with the model of extensional collapse of the orogen.


2018 ◽  
Vol 55 (9) ◽  
pp. 1063-1078 ◽  
Author(s):  
Michelle J. Markley ◽  
Steven R. Dunn ◽  
Michael J. Jercinovic ◽  
William H. Peck ◽  
Michael L. Williams

The Central Metasedimentary Belt boundary zone (CMBbz) is a crustal-scale shear zone that juxtaposes the Central Gneiss Belt and the Central Metasedimentary Belt of the Grenville Province. Geochronological work on the timing of deformation and metamorphism in the CMBbz is ambiguous, and the questions that motivate our study are: how many episodes of shear zone activity did the CMBbz experience, and what is the tectonic significance of each episode? We present electron microprobe data from monazite (the U–Th–Pb chemical method) to directly date deformation and metamorphism recorded in five garnet–biotite gneiss samples collected from three localities of the CMBbz of Ontario (West Guilford, Fishtail Lake, and Killaloe). All three localities yield youngest monazite dates ca. 1045 Ma; most of the monazite domains that yield these dates are high-Y rims. In comparison with this common late Ottawan history, the earlier history of the three CMBbz localities is less clearly shared. The West Guilford samples have monazite grain cores that show older high-Y domains and younger low-Y domains; these cores yield a prograde early Ottawan (1100–1075 Ma) history. The Killaloe samples yield a well-defined prograde, pre- to early Shawinigan history (i.e., 1220–1160 Ma) in addition to some evidence for a second early Ottawan event. In other words, the answers to our research questions are: three events; a Shawinigan event possibly associated with crustal thickening, an Ottawan event possibly associated with another round of crustal thickening, and a late Ottawan event that resists simple interpretation in terms of metamorphic history but that coincides chronologically with crustal thinning at the base of an orogenic lid.


2019 ◽  
Vol 48 (3) ◽  
pp. 49-63
Author(s):  
Milena Georgirva ◽  
Tzvetomila Vladinova

Garnet–clinopyroxene–K-feldspar granulite occurs as a thick layer or boudin within the variegated rocks of the Chepelare shear zone in the Central Rhodope massif, Bulgaria. It consists of several domains: mesocratic homogeneous matrix (clinopyroxene–plagioclase–K-feldspar–quartz ± amphibole), porphyroblastic garnet, K-feldspar and clinopyroxene, and strongly foliated fine-grain bands (chloritized biotite–chlorite–prehnite–albite ± epidote). The origin and nature of the matrix mineral association is still unclear. The peak porphyroblast association forms at the expense of plagioclase from the matrix at higher pressure. The fine-grain deformation zones channel the lattermost fluid infiltration. The clinopyroxene-garnet and Zr-in-titanite thermometry give temperatures higher than 790–860 ºC at 2 GPa and, with thermodynamic modeling, suggests crystallization at ~1.8–2.1 GPa and temperature of ~850 ºC in HP granulite field for the porphyroblast granulite association.


1987 ◽  
Vol 51 (360) ◽  
pp. 207-215 ◽  
Author(s):  
Ram S. Sharma ◽  
Jane D. Sills ◽  
M. Joshi

AbstractMetanorite dykes intrude the Banded Gneiss Complex at various places in Rajasthan, N.W. India. They show neither chilled margins nor gradational contacts with the country rock amphibolite or granulite facies gneisses. They have ophitic to subophitic texture with strongly zoned subcalcic clinopyroxene and orthopyroxene, olivine and plagioclase, with subsidiary biotite. During slow cooling a series of reaction coronas developed with garnet forming round biotite, ilmenite and orthopyroxene; hornblende round pyroxenes and orthopyroxene, hornblende ± spinel round olivine, which may be totally replaced. It is inferred that the dykes crystallised from a tholeiitic magma at about 1100-1150 °C and were intruded during the waning stages of granulite facies metamorphism. The corona minerals grew at about 650–700 °C. A series of reactions to account for the development of the coronas is proposed using measured mineral compositions. Although these reactions do not balance for individual corona formation, metamorphism was probably isochemical with Ca, Na, K, Ti, Si and H2O only mobile on the scale of a thin section. Si and H2O were possibly mobile on a larger scale.


2002 ◽  
Vol 39 (8) ◽  
pp. 1169-1187 ◽  
Author(s):  
Jane A Gilotti ◽  
Synnøve Elvevold

The Payer Land gneiss complex is unique among the mostly amphibolite-facies, mid-crustal gneiss complexes in the East Greenland Caledonides due to its well-preserved, regional high-pressure (HP) granulite-facies metamorphism. High-pressure – high-temperature (HP–HT) assemblages are recognized in mafic, ultramafic, granitic, and metasedimentary lithologies. Anatectic metapelites contain the assemblage garnet + kyanite + K-feldspar + antiperthite (exsolved ternary feldspar) + quartz ± biotite ± rutile and record approximately the same peak metamorphic conditions (pressure (P) = 1.4–1.5 GPa, temperature (T) = 800–850°C) as those of the neighboring mafic HP granulites. The HP granulite-facies metamorphism is Caledonian based on in situ U–Th–Pb electron microprobe dating of monazite from two samples of the aluminous paragneiss. The monazites are found along garnet–kyanite phase boundaries, as inclusions in garnet and kyanite, and within small leucocratic melt pods (K-feldspar + plagioclase + kyanite ± garnet) within the HP–HT paragneisses. Mylonitic equivalents of the metapelites contain a detrital monazite age signature that suggests the Payer Land paragneisses correlate with other Mesoproterozoic metasedimentary sequences in the area. The gneisses form a metamorphic core complex that is separated from the overlying low-grade sedimentary rocks of the Neoproterozoic Eleonore Bay Supergroup by an extensional detachment. This newly recognized Payer Land detachment is part of a system of prominent extensional faults located in the southern half of the Greenland Caledonides (i.e., south of 76°N). The HP granulites preserve the deepest level of crust exposed in this southern segment of the orogen and attest to significant crustal thickening.


2015 ◽  
Vol 257 ◽  
pp. 22-46 ◽  
Author(s):  
Renaud Soucy La Roche ◽  
Félix Gervais ◽  
Alain Tremblay ◽  
James L. Crowley ◽  
Gilles Ruffet

1983 ◽  
Vol 73 (4) ◽  
pp. 221-244 ◽  
Author(s):  
M. Raith ◽  
P. Raase ◽  
D. Ackermand ◽  
R. K. Lal

ABSTRACTIn the southern part of the Archaean craton of South India, an approximately 3.4–2.9 b.y. old migmatite–gneiss terrane (Peninsular gneiss complex) has been subjected to granulite facies metamorphism about 2.6 b.y. ago. During this event, the extensive charnockite-khondalite zone of southern India developed. A younger metamorphism (Proterozoic?) led to retrogression of the charnockites and khondalites, mainly under the conditions of the amphibolite facies.The physical conditions of metamorphism have been evaluated by applying methods of geothermobarometry to the widespread charnockitic assemblages with garnet, orthopyroxene, clinopyroxene, plagioclase, and quartz. The interpretation of the P–T estimates includes a critical discussion of potential error sources, e.g. errors of the analytical data and the calibrations of the models, and takes into account the complex metamorphic history of the rocks and the kinetics of the mineral equilibria.P-T estimates were obtained for seven subareas from the rim compositions of the coexisting minerals: Shevaroy Hills 680±55°C—7·4±1 kb; Kollaimalai area 680±40°C—8·6± 1 kb; Nilgiri Hills 680±90°C—6·6±0.8kb (upland massif) and 705±60°C—9·3±0.8 kb (northern margin); Bhavani Sagar area 650±50°C—7·2± 1 kb; Sargur-Mysore area 690±60°C—7·6 kb; Bangalore-Kunigal-Satnur area 760±50°C—6 kb. Except for the last subarea, the P-T model data reflect the conditions of a late annealing stage probably related to the retrogressive metamorphism. Conditions near the peak of granulite facies metamorphism (730–800°C—6·5–9·5 kb) are recorded by the core compositions of the minerals. Although a rather uniform cooling history of the main part of the charnockite-khondalite terrane is suggested from the temperature data, differential uplift of smaller blocks is indicated by the regional variation of the pressure data.


Sign in / Sign up

Export Citation Format

Share Document