scholarly journals Using passive acoustic monitoring to document the distribution of beaked whale species in the western North Atlantic Ocean

2017 ◽  
Vol 74 (12) ◽  
pp. 2098-2109 ◽  
Author(s):  
Joy E. Stanistreet ◽  
Douglas P. Nowacek ◽  
Simone Baumann-Pickering ◽  
Joel T. Bell ◽  
Danielle M. Cholewiak ◽  
...  

Little is known about the ecology of many beaked whale species, despite concerns raised by mass strandings linked to certain sources of anthropogenic noise. Here, we used passive acoustic monitoring to examine spatial and temporal patterns in beaked whale occurrence at six locations along the continental slope in the western North Atlantic Ocean. We analyzed 2642 days of recordings collected between 2011 and 2015, and identified echolocation signals from northern bottlenose whales (Hyperoodon ampullatus), Cuvier’s (Ziphius cavirostris), Sowerby’s (Mesoplodon bidens), Gervais’, (Mesoplodon europaeus), and Blainville’s (Mesoplodon densirostris) beaked whales, and one signal type of unknown origin. We recorded multiple species at each site, with detections generally occurring year-round, and observed latitudinal gradients and site-specific variation in relative species occurrence. Notably, we regularly detected Cuvier’s beaked whales in a region where they have not been commonly observed, and discovered potential habitat partitioning among Cuvier’s and Gervais’ beaked whales within their overlapping ranges. This information on the distribution and seasonal occurrence of North Atlantic beaked whale species offers new insight into patterns of habitat use, and provides a year-round baseline from which to assess potential anthropogenic impacts.

2019 ◽  
Vol 35 (4) ◽  
pp. 1280-1303
Author(s):  
Delphine Durette‐Morin ◽  
Kimberley T. A. Davies ◽  
Hansen D. Johnson ◽  
Moira W. Brown ◽  
Hilary Moors‐Murphy ◽  
...  

2021 ◽  
Vol 168 (8) ◽  
Author(s):  
Ally Rice ◽  
Amanda J. Debich ◽  
Ana Širović ◽  
Erin M. Oleson ◽  
Jennifer S. Trickey ◽  
...  

AbstractA variety of cetacean species inhabit the productive waters offshore of Washington State, USA. Although the general presence of many of these species has been documented in this region, our understanding of fine-scale habitat use is limited. Here, passive acoustic monitoring was used to investigate the spatial and temporal distributions of ten cetacean species at three locations offshore of Washington. Between 2004 and 2013, a total of 2845 days of recordings were collected from sites on the continental shelf and slope, and in a submarine canyon. Acoustic presence was higher for all species at sites farther offshore. Detections were highest during the fall and winter for blue (Balaenoptera musculus), fin (B. physalus), and humpback whales (Megaptera novaeangliae), likely related to reproductive behavior, while minke whales (B. acutorostrata) were only detected on two days. Odontocetes showed temporal separation, with sperm whale (Physeter macrocephalus) detections highest in spring, Risso’s (Grampus griseus) and Pacific white-sided dolphins (Lagenorhynchus obliquidens) highest in summer, and Stejneger’s beaked whales (Mesoplodon stejnegeri), Cuvier’s beaked whales (Ziphius cavirostris), and the BW37V signal type highest in winter or spring. There was interannual variation in detections for most mysticete species, which may be linked to oceanographic conditions: blue and fin whale detections increased during 2007 and 2008, and fin and humpback whale detections increased in 2011. These results inform our understanding of cetacean behavior and habitat use in this region and may aid in the development of conservation strategies suited to the dynamic conditions that drive cetacean distribution.


2021 ◽  
Vol 2 ◽  
Author(s):  
Kerri J. Smith ◽  
Clive N. Trueman ◽  
Christine A. M. France ◽  
Jed P. Sparks ◽  
Andrew C. Brownlow ◽  
...  

Elusive wildlife are challenging to study, manage, or conserve, as the difficulty of obtaining specimens or conducting direct observations leads to major data deficiencies. Specimens of opportunity, such as salvaged carcasses or museum specimens, are a valuable source of fundamental biological and ecological information on data-deficient, elusive species, increasing knowledge of biodiversity, habitat and range, and population structure. Stable isotope analysis is a powerful indirect tool that can be used to infer foraging behavior and habitat use retrospectively from archived specimens. Beaked whales are a speciose group of cetaceans that are challenging to study in situ, and although Sowerby's beaked whale (Mesoplodon bidens) was discovered >200 years ago, little is known about its biology. We measured δ13C and δ15N stable isotope composition in bone, muscle, and skin tissue from 102 Sowerby's beaked whale specimens of opportunity collected throughout the North Atlantic Ocean to infer movement ecology and spatial population structure. Median δ13C and δ15N values in Sowerby's beaked whale bone, muscle, and skin tissues significantly differed between whales sampled from the east and west North Atlantic Ocean. Quadratic discriminant analysis that simultaneously considered δ13C and δ15N values correctly assigned >85% of the specimens to their collection region for all tissue types. These findings demonstrate Sowerby's beaked whale exhibits both short- and long-term site fidelity to the region from which the specimens were collected, suggest that this species is composed of two or more populations or exhibits a metapopulation structure, and have implications for conservation and management policy. Stable isotope analysis of specimens of opportunity proved a highly successful means of generating new spatial ecology data for this elusive species and is a method that can be effectively applied to other elusive species.


Sign in / Sign up

Export Citation Format

Share Document