Bioenergetic assessment of habitat quality for stream-dwelling cutthroat trout (Oncorhynchus clarkii bouvieri) with implications for climate change and nutrient supplementation

2010 ◽  
Vol 67 (2) ◽  
pp. 371-385 ◽  
Author(s):  
Amy R. Jenkins ◽  
Ernest R. Keeley

We used a bioenergetic model to determine if cutthroat trout ( Oncorhynchus clarkii bouvieri ) abundance was related to net energy intake rates (NEI) and the proportion of suitable habitat and to evaluate potential changes in habitat quality due to climate change and stream fertilization efforts. We conducted monthly sampling of cutthroat trout, invertebrate drift, and physical habitat features in pool and riffle habitats. Fish in this study selected foraging positions that enabled them to maximize NEI, and most fish were capable of sustaining high growth rates from July to September. Mean NEI and the proportion of suitable habitat at sites were greater in pools relative to riffle habitats and declined from July to October, primarily due to a decline in temperature over the four months. Cutthroat trout biomass was significantly related to NEI and the proportion of suitable habitat at a site. Model simulations indicated that climate change might reduce habitat quality for small-bodied trout, while extending the growing season for larger fish. Increased food abundance provided only marginal changes to model outcomes, whereas reductions in food significantly reduced habitat quality.

Author(s):  
Kadie B. Heinle ◽  
Lisa A. Eby ◽  
Clint C. Muhlfeld ◽  
Amber C. Steed ◽  
Leslie A. Jones ◽  
...  

Climate warming is expected to have substantial impacts on native trout across the Rocky Mountains, but there is little understanding of how these changes affect future distributions of co-occurring native fishes within population strongholds. We used mixed-effects logistic regression to investigate the role of abiotic (e.g., temperature) and biotic factors (Bull Trout presence, Salvelinus confluentus) on distributions of Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi; WCT) in the North Fork Flathead River, USA and Canada. The probability of WCT presence increased with stream temperature and decreased with channel gradient and Bull Trout presence, yet the effect of Bull Trout was reduced with increasing pool densities. Combining this model with spatially-explicit stream temperature projections, we predict a 29% increase in suitable habitat under high emissions through 2075, with gains at mid-elevation sites predicted to exceed Bull Trout thermal tolerances and high-elevation sites expected to become more thermally suitable for WCT. Our study illustrates the importance of considering abiotic and biotic drivers to assess species response to climate change, helping to guide local scale climate adaptation and management.


<em>Abstract.</em>—Small stream systems are complex networks that form a physicochemical template governing the persistence of aquatic species such as coastal cutthroat trout <em>Oncorhynchus clarkii clarkii</em>. To gain new insight into these interactions, we initiated an integrated program of landscape- scale sampling that is focused on fine- and broad-scale relationships among upslope landscape characteristics, physical stream habitat, and the spatial patterns of cutthroat trout abundance. Our sample of 40 catchments (500–1,000 ha) represented approximately 15% of the 269 barrier-isolated catchments in western Oregon that support populations of cutthroat trout. Because data were collected in a spatially contiguous manner throughout each catchment, it was possible to collect biological and geographic information necessary to assess the spatial structure of cutthroat trout abundance. Results underscore the influence of the physical habitat template at a variety of spatial scales. For example, cutthroat trout move throughout the accessible portions of small streams. Some cutthroat trout congregate in areas of suitable habitat and form local populations that may exhibit unique genetic attributes. At times, some cutthroat trout move into larger downstream portions of the network where they may contribute to the genetic character of anadromous or local potamodromous assemblages. Results underscore the advantages of viewing habitats that are critical to the fitness and persistence of cutthroat trout populations as matrices of physical sites that are linked by movement. It is apparent that human activities that impede movement among suitable habitat patches can have unanticipated consequences for metapopulations of cutthroat trout and may ultimately affect their persistence.


2016 ◽  
Vol 73 (5) ◽  
pp. 819-831 ◽  
Author(s):  
Ernest R. Keeley ◽  
Steven O. Campbell ◽  
Andre E. Kohler

Nutrient supplementation in oligotrophic streams is proposed as a means of mitigating losses of marine-derived subsidies from declining or extirpated populations of anadromous fishes. One of the central predictions of nutrient addition is an increased production of fish through bottom-up increases in invertebrate abundance. Such changes in food availability may increase growth and production rates for stream fishes by increasing habitat quality. In this study we apply bioenergetic calculations to estimate changes to habitat quality based on predicted increases in net energy intake. We compared invertebrate drift abundance and estimated changes in energy availability in streams treated with salmon carcass analog versus untreated controls. Our results revealed a two- to threefold increase in invertebrate drift abundance following the addition of salmon carcass analog; however, this effect appeared to be short-term. Measures of the energetic profitability of stream habitat for salmonid fishes revealed small, yet significant, increases in net energy availability in streams that received analog additions, but only after controlling for differences in physical habitat features such as temperature and stream flow.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3508
Author(s):  
Vytautas Akstinas ◽  
Tomas Virbickas ◽  
Jūratė Kriaučiūnienė ◽  
Diana Šarauskienė ◽  
Darius Jakimavičius ◽  
...  

Aquatic ecosystems are particularly vulnerable to anthropogenic activity and climate change. The changes in flow regimes in Lithuanian lowland rivers due to the operation of hydropower plants (HPPs) and the impact of altered flow on some fish species have already been studied. The impact of climate change on future natural river runoff and the structure of fish assemblages was also investigated. However, it is still unknown how the combined effect of climate change and flow regulation related to hydropower generation may affect fish assemblages in the downstream river reaches below the Lithuanian HPPs. In this study, the physical habitat modelling system MesoHABSIM was used to simulate spatial and temporal changes in aquatic habitats availability for different fish species under the influence of HPP at different climate change scenarios. Changes in the available habitat were assessed for common fish species in four HPP-affected rivers representing different hydrological regions of Lithuania. The modelling results showed that the operation of HPP under climate change conditions in most rivers could be beneficial for small benthic fish species such as gudgeon Gobio gobio and stone loach Barbatula barbatula. Meanwhile, for larger fish species (e.g., chub Squalius cephalus and vimba Vimba vimba) the alteration in the temporal availability of suitable habitat was relatively higher.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 84
Author(s):  
Huanchu Liu ◽  
Hans Jacquemyn ◽  
Xingyuan He ◽  
Wei Chen ◽  
Yanqing Huang ◽  
...  

Human pressure on the environment and climate change are two important factors contributing to species decline and overall loss of biodiversity. Orchids may be particularly vulnerable to human-induced losses of habitat and the pervasive impact of global climate change. In this study, we simulated the extent of the suitable habitat of three species of the terrestrial orchid genus Cypripedium in northeast China and assessed the impact of human pressure and climate change on the future distribution of these species. Cypripedium represents a genus of long-lived terrestrial orchids that contains several species with great ornamental value. Severe habitat destruction and overcollection have led to major population declines in recent decades. Our results showed that at present the most suitable habitats of the three species can be found in Da Xing’an Ling, Xiao Xing’an Ling and in the Changbai Mountains. Human activity was predicted to have the largest impact on species distributions in the Changbai Mountains. In addition, climate change was predicted to lead to a shift in distribution towards higher elevations and to an increased fragmentation of suitable habitats of the three investigated Cypripedium species in the study area. These results will be valuable for decision makers to identify areas that are likely to maintain viable Cypripedium populations in the future and to develop conservation strategies to protect the remaining populations of these enigmatic orchid species.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 990
Author(s):  
Tariq M. Munir ◽  
Cherie J. Westbrook

Beaver dam analogues (BDAs) are becoming an increasingly popular stream restoration technique. One ecological function BDAs might help restore is suitable habitat conditions for fish in streams where loss of beaver dams and channel incision has led to their decline. A critical physical characteristic for fish is stream temperature. We examined the thermal regime of a spring-fed Canadian Rocky Mountain stream in relation to different numbers of BDAs installed in series over three study periods (April–October; 2017–2019). While all BDA configurations significantly influenced stream and pond temperatures, single- and double-configuration BDAs incrementally increased stream temperatures. Single and double configuration BDAs warmed the downstream waters of mean maxima of 9.9, 9.3 °C by respective mean maxima of 0.9 and 1.0 °C. Higher pond and stream temperatures occurred when ponding and discharge decreased, and vice versa. In 2019, variation in stream temperature below double-configuration BDAs was lower than the single-configuration BDA. The triple-configuration BDA, in contrast, cooled the stream, although the mean maximum stream temperature was the highest below these structures. Ponding upstream of BDAs increased discharge and resulted in cooling of the stream. Rainfall events sharply and transiently reduced stream temperatures, leading to a three-way interaction between BDA configuration, rainfall and stream discharge as factors co-influencing the stream temperature regime. Our results have implications for optimal growth of regionally important and threatened bull and cutthroat trout fish species.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1604
Author(s):  
Sun Hee Hong ◽  
Yong Ho Lee ◽  
Gaeun Lee ◽  
Do-Hun Lee ◽  
Pradeep Adhikari

Predicting the distribution of invasive weeds under climate change is important for the early identification of areas that are susceptible to invasion and for the adoption of the best preventive measures. Here, we predicted the habitat suitability of 16 invasive weeds in response to climate change and land cover changes in South Korea using a maximum entropy modeling approach. Based on the predictions of the model, climate change is likely to increase habitat suitability. Currently, the area of moderately suitable and highly suitable habitats is estimated to be 8877.46 km2, and 990.29 km2, respectively, and these areas are expected to increase up to 496.52% by 2050 and 1439.65% by 2070 under the representative concentration pathways 4.5 scenario across the country. Although habitat suitability was estimated to be highest in the southern regions (<36° latitude), the central and northern regions are also predicted to have substantial increases in suitable habitat areas. Our study revealed that climate change would exacerbate the threat of northward weed invasions by shifting the climatic barriers of invasive weeds from the southern region. Thus, it is essential to initiate control and management strategies in the southern region to prevent further invasions into new areas.


2021 ◽  
Vol 22 (3) ◽  
pp. 1357
Author(s):  
Ewelina A. Klupczyńska ◽  
Tomasz A. Pawłowski

Environmental conditions are the basis of plant reproduction and are the critical factors controlling seed dormancy and germination. Global climate change is currently affecting environmental conditions and changing the reproduction of plants from seeds. Disturbances in germination will cause disturbances in the diversity of plant communities. Models developed for climate change scenarios show that some species will face a significant decrease in suitable habitat area. Dormancy is an adaptive mechanism that affects the probability of survival of a species. The ability of seeds of many plant species to survive until dormancy recedes and meet the requirements for germination is an adaptive strategy that can act as a buffer against the negative effects of environmental heterogeneity. The influence of temperature and humidity on seed dormancy status underlines the need to understand how changing environmental conditions will affect seed germination patterns. Knowledge of these processes is important for understanding plant evolution and adaptation to changes in the habitat. The network of genes controlling seed dormancy under the influence of environmental conditions is not fully characterized. Integrating research techniques from different disciplines of biology could aid understanding of the mechanisms of the processes controlling seed germination. Transcriptomics, proteomics, epigenetics, and other fields provide researchers with new opportunities to understand the many processes of plant life. This paper focuses on presenting the adaptation mechanism of seed dormancy and germination to the various environments, with emphasis on their prospective roles in adaptation to the changing climate.


2020 ◽  
Vol 13 (1) ◽  
pp. 305
Author(s):  
W.J. Wouter Botzen ◽  
Tim Nees ◽  
Francisco Estrada

Fixed effects panel models are used to estimate how the electricity and gas consumption of various sectors and residents relate to temperature in Mexico, while controlling for the effects of income, manufacturing output per capita, electricity and gas prices and household size. We find non-linear relationships between energy consumption and temperature, which are heterogeneous per state. Electricity consumption increases with temperature, and this effect is stronger in warm states. Liquified petroleum gas consumption declines with temperature, and this effect is slightly stronger in cold states. Extrapolations of electricity and gas consumption under a high warming scenario reveal that electricity consumption by the end of the century for Mexico increases by 12%, while gas consumption declines with 10%, resulting in substantial net economic costs of 43 billion pesos per year. The increase in net energy consumption implies greater efforts to comply with the mitigation commitments of Mexico and requires a much faster energy transition and substantial improvements in energy efficiency. The results suggest that challenges posed by climate change also provide important opportunities for advancing social sustainability goals and the 2030 Agenda for Sustainable Development. This study is part of Mexico’s Sixth National Communication to the United Nations Framework Convention on Climate Change.


PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0172107 ◽  
Author(s):  
Juan M. Requena-Mullor ◽  
Enrique López ◽  
Antonio J. Castro ◽  
Domingo Alcaraz-Segura ◽  
Hermelindo Castro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document