Mixed-severity fire in lodgepole pine dominated forests: are historical regimes sustainable on Oregon’s Pumice Plateau, USA?

2014 ◽  
Vol 44 (6) ◽  
pp. 593-603 ◽  
Author(s):  
Emily K. Heyerdahl ◽  
Rachel A. Loehman ◽  
Donald A. Falk

In parts of central Oregon, coarse-textured pumice substrates limit forest composition to low-density lodgepole pine (Pinus contorta Douglas ex Loudon var. latifolia Engelm. ex S. Watson) with scattered ponderosa pine (Pinus ponderosa Lawson & C. Lawson) and a shrub understory dominated by antelope bitterbrush (Purshia tridentata (Pursh) DC.). We reconstructed the historical fire regime from tree rings and simulated fire behavior over 783 ha of this forest type. For centuries (1650–1900), extensive mixed-severity fires occurred every 26 to 82 years, creating a multi-aged forest and shrub mosaic. Simulation modeling suggests that the historical mix of surface and passive crown fire were primarily driven by shrub biomass and wind speed. However, a century of fire exclusion has reduced the potential for the high-severity patches of fire that were common historically, likely by reducing bitterbrush cover, the primary ladder fuel. This reduced shrub cover is likely to persist until fire or insects create new canopy gaps. Crown fire potential may increase even with current fuel loadings if the climate predicted for midcentury lowers fuel moistures, but only under rare extreme winds. This study expands our emerging understanding of complexity in the disturbance dynamics of lodgepole pine across its broad North American range.

2003 ◽  
Vol 18 (3) ◽  
pp. 149-154 ◽  
Author(s):  
Chad E. Keyser ◽  
Kelsey S. Milner

Abstract This study examined long-term diameter and height response of ponderosa pine (Pinus ponderosa) and lodgepole pine (Pinus contorta var. latifolia) to a one-time application of herbicide during seedling establishment in western Montana. Two herbicide trials initiated in 1981 and 1983 by Champion International Corporation were resurrected during the summer of 1997. Analysis of variance (ANOVA) F-tests along with Duncan's Multiple Range tests (DMR) were performed on mean tree dbh, tree height, and competing vegetation percent cover estimates. In addition, a graphical analysis of mean annual height growth over time was performed. Significant increases (alpha = 0.05) in ponderosa pine dbh (25 to 44%) and height (11 to 28%) were found after 16 yr of growth on Velpar L. (hexazinone) treated plots, while lodgepole pine had significant increases in dbh (70 to 118%) and height (41 to 82%) after 15 yr of growth on Velpar L. treated plots. Graphical analyses indicated a positive height growth effect for a period of 11 to 13 yr following treatment for ponderosa pine; however, total height gains had decreased in recent years. Positive increases in height growth for lodgepole pine were continuing after 15 yr of growth. These results indicate that a one-time application of herbicide applied during seedling establishment will promote faster tree growth in western Montana. We also note that proper density management will be necessary early in the life of the stand to maintain height gains. West. J. Appl. For. 18(3):149–154.


2002 ◽  
Vol 32 (8) ◽  
pp. 1360-1371 ◽  
Author(s):  
R C Godfree ◽  
R O Tinnin ◽  
R B Forbes

We investigated the importance of lodgepole pine dwarf mistletoe (Arceuthobium americanum Nutt.) in determining the height to crown top (HCT), height to crown base (HCB), and live crown ratio (LCR) of 2025 lodgepole pine (Pinus contorta var. murrayana (Grev. & Balf.) Engelm.) growing over a 24-km2 study site in central Oregon. We compared the effects of infection and associated witches' brooms with those of site topography, soil type, shrub cover, stand density, and the abundance of mature ponderosa pine (Pinus ponderosa Dougl. ex P. Laws. & C. Laws). using multiple regression and path analysis. The density of dominant-size P. contorta was consistently the most important factor influencing HCT, HCB, and LCR across the study site. In dense stands, trees tended to have elevated crown bases due to self-pruning and, hence, lower values of LCR. Dwarf mistletoe and related witches' brooms uniquely explained 6.9% of the variance in LCR, which was close to that of dominant P. contorta (7.1%) and more than that of soil type (3.0%), but explained only 2.6% of the variance in HCB, which was less than that of dominant P. contorta (6.5%) and soil type (4.6%). Regression models suggest that heavily infected trees should be 18% shorter and have crown bases 37% lower than uninfected trees, while moderately infected trees should have an LCR over 20% larger than that of uninfected and heavily infected trees. We also found that the largest 25 heavily infected trees sampled were approximately 19% shorter and 11–13% smaller in diameter than the largest 25 uninfected trees. The results suggest that dwarf mistletoe can be an important factor in determining the crown dimensions of P. contorta but that these effects may be interpreted only in the context of site characteristics and stand structure.


1999 ◽  
Vol 9 (4) ◽  
pp. 223 ◽  
Author(s):  
Richard Everett ◽  
John Lehmkuhl ◽  
Richard Schellhaas ◽  
Pete Ohlson ◽  
David Keenum ◽  
...  

Snag numbers and decay class were measured on a chronosequence of 26 wildfires (ages 1-81 years) on the east slope of the Cascade Range in Washington. Snag longevity and resultant snag densities varied spatially across burns in relation to micro-topographic position. Longevity of snags < 41cm dbh was greater for thin-barked Engelmann spruce (Picea engelmannii), subalpine fir (Abies lasiocarpa) and lodgepole pine (Pinus contorta) than thick-barked Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa). With larger diameter snags, however, Douglas-fir persisted longer than Engelmann spruce. The time period required for recruitment of soft snags > 23 cm dbh was estimated to exceed snag longevity for ponderosa pine, Englemann spruce, lodgepole pine, and subapline fir, causing an “on-site gap” in soft snags for these species. Snags of Douglas-fir ≥ 41 cm dbh stood for a sufficient time (40% standing after 80 years) to potentially overlap the recruitment of soft snags ≥ 23 cm dbh from the replacement stand. Providing continuity in soft snags following stand-replacement events would require a landscape-scale perspective, incorporating adjacents stands of different ages or disturbance histories. Results suggest that standards and guidelines for snags on public forest lands need to be sufficiently flexible to accomodate both disturbance and stand development phases and differences in snag longevity among species and topographic positions.


2009 ◽  
Vol 39 (10) ◽  
pp. 1893-1900 ◽  
Author(s):  
A. Chatterjee ◽  
G. F. Vance ◽  
D. B. Tinker

Forest management practices can have a significant effect on above- and below-ground carbon (C) pools. To better understand the distribution of forest C pools, we evaluated representative forest stands within two dominant Wyoming forest types to assess differences resulting from management practices that have occurred over several decades. Study sites included four ponderosa pine ( Pinus ponderosa Douglas ex Lawson & C.Lawson) treatments (100-year-old unmanaged, 46-year-old even-aged, 110-year-old uneven-aged, and 90-year-old intensively harvested) and two lodgepole pine ( Pinus contorta Engelm. var. latifolia (Engelm. ex Wats.) Critchfield) treatments (145-year-old unmanaged and 45-year-old even-aged). Comparisons of aboveground C pools revealed that distributions of live and dead biomass C pools were different between unmanaged and managed stands; however, belowground soil C pools were similar among stands within the two forest types. Overall, unmanaged stands of both forest types had higher total ecosystem C pools (249 and 247 Mg C·ha–1 for ponderosa and lodgepole pine, respectively) compared with managed stands (ponderosa pine: even-aged, 164 Mg C·ha–1; uneven-aged, 170 Mg C·ha–1; intensively harvested, 200 Mg C·ha–1; and lodgepole pine even-aged, 117 Mg C·ha–1). Our results indicate timber harvesting has a major influence on total ecosystem C pools by reducing live tree biomass.


Fire ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 23 ◽  
Author(s):  
Wade D. Steady ◽  
Raquel Partelli Feltrin ◽  
Daniel M. Johnson ◽  
Aaron M. Sparks ◽  
Crystal A. Kolden ◽  
...  

Improved predictions of tree species mortality and growth metrics following fires are important to assess fire impacts on forest succession, and ultimately forest growth and yield. Recent studies have shown that North American conifers exhibit a ‘toxicological dose-response’ relationship between fire behavior and the resultant mortality or recovery of the trees. Prior studies have not been conclusive due to potential pseudo-replication in the experimental design and time-limited observations. We explored whether dose-response relationships are observed in ponderosa pine (Pinus ponderosa) saplings exposed to surface fires of increasing fire behavior (as quantified by Fire Radiative Energy—FRE). We confirmed equivalent dose-response relationships to the prior studies that were focused on other conifer species. The post-fire growth in the saplings that survived the fires decreased with increasing FRE dosages, while the percentage mortality in the sapling dosage groups increased with the amount of FRE applied. Furthermore, as with lodgepole pine (Pinus contorta), a low FRE dosage could be applied that did not yield mortality in any of the replicates (r = 10). These results suggest that land management agencies could use planned burns to reduce fire hazard while still maintaining a crop of young saplings. Incorporation of these results into earth-system models and growth and yield models could help reduce uncertainties associated with the impacts of fire on timber growth, forest resilience, carbon dynamics, and ecosystem economics.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 834
Author(s):  
Harold S. J. Zald ◽  
Becky K. Kerns ◽  
Michelle A. Day

Fire exclusion has dramatically altered historically fire adapted forests across western North America. In response, forest managers reduce forest fuels with mechanical thinning and/or prescribed burning to alter fire behavior, with additional objectives of restoring forest composition, structure, and ecosystem processes. There has been extensive research on the effects of fuel reduction and restoration treatments on trees, fuels, regeneration, and fire behavior; but less is known about how these treatments influence understory vegetation, which contains the majority of vascular plant diversity in many dry conifer forests. Of particular interest is how understory vegetation may respond to the season and interval of prescribed burning. The season and interval of prescribed burning is often determined by operational constraints rather than historical fire regimes, potentially resulting in fire conditions and burn intervals to which native plants are poorly adapted. In this study, we examined how understory vegetation has responded to season and interval of prescribed burning in ponderosa pine (Pinus ponderosa) forests in the Blue Mountains of northeastern Oregon, USA. Using over a decade (2002–2015) of understory vegetation data collected in stands with different intervals (5 versus 15 year) and seasons (spring versus fall) of prescribed burning, we quantified how season and interval of prescribed burning has influenced understory vegetation compositional trajectories and indicator species over time. Season of prescribed burning resulted in different understory communities and distinct trajectories of understory composition over time, but interval of burning did not. Indicator species analysis suggests fall burning is facilitating early seral species, with native annual forbs displaying ephemeral responses to frequent burning, while invasive cheatgrass (Bromus tectorum) increased in abundance and frequency across all treatments over time. These findings indicate that understory vegetation in these ecosystems are sensitive to seasonality of burning, but the responses are subtle. Our findings suggest season and interval of prescribed burning used in this study do not result in large changes in understory vegetation community composition, a key consideration as land managers increase the pace and scale of prescribed fire in these forests.


1991 ◽  
Vol 6 (3) ◽  
pp. 64-67 ◽  
Author(s):  
Thomas P. Sullivan ◽  
Wayne L. Martin

Abstract The incidence of meadow vole (Microtus pennsylvanicus) and brown lemming (Lemmus sibiricus) feeding damage to young plantations of lodgepole pine (Pinus contorta var. latifolia) and interior spruce (Picea glauca × Picea engelmannii) was studied in west-central British Columbia. Fifty-eight plantations were surveyed for seedling survival and stocking, and an additional 21 older plantations of lodgepole pine were surveyed for tree damage. Average survival of pine (47.7%) was significantly lower than that of spruce (56.0%). Because of mortality from vole feeding, 24 of the 58 plantations were not satisfactorily restocked. Planted trees were attacked significantly more than natural regeneration. Severely attacked plantations occurred in the spruce-subalpine fir (Abies lasiocarpa) forest type at elevations > 800 m on N to NE aspects. Susceptible plantations generally had mechanical or no site preparation with complex post-harvest debris and limited vegetation cover. West. J. Appl. For. 6(3):64-67.


2011 ◽  
Vol 26 (3) ◽  
pp. 101-109 ◽  
Author(s):  
Jennifer G. Klutsch ◽  
Mike A. Battaglia ◽  
Daniel R. West ◽  
Sheryl L. Costello ◽  
José F. Negrón

Abstract A mountain pine beetle outbreak in Colorado lodgepole pine forests has altered stand and fuel characteristics that affect potential fire behavior. Using the Fire and Fuels Extension to the Forest Vegetation Simulator, potential fire behavior was modeled for uninfested and mountain pine beetle-affected plots 7 years after outbreak initiation and 10 and 80% projected tree fall using measured and projected fuel and stand characteristics. Under 90th percentile weather conditions, uninfested plots exhibited proportionally more crown fire than infested plots. Plots predicted to have crown fire were composed mainly of nonhost conifer species and had a lower and more continuous canopy than infested plots. Where surface fire was predicted to occur, live lodgepole pine was the only conifer present, and plots had significantly lower tree mortality from fire than plots predicted to have crown fire. Mountain pine beetle-induced changes in stand and fuel characteristics resulted in increased intensity of surface fire behavior. Furthermore, with 80% infested tree fall, potential smoke production was predicted to be higher. Tree species composition of stands pre and postbark beetle outbreak is important when identifying mountain pine beetle-caused changes to potential fire behavior.


2017 ◽  
Vol 26 (10) ◽  
pp. 852 ◽  
Author(s):  
Kellen N. Nelson ◽  
Monica G. Turner ◽  
William H. Romme ◽  
Daniel B. Tinker

Early-seral forests are expanding throughout western North America as fire frequency and annual area burned increase, yet fire behaviour in young postfire forests is poorly understood. We simulated fire behaviour in 24-year-old lodgepole pine (Pinus contorta var. latifolia) stands in Yellowstone National Park, Wyoming, United States using operational models parameterised with empirical fuel characteristics, 50–99% fuel moisture conditions, and 1–60kmhr−1 open winds to address two questions: [1] How does fireline intensity, and crown fire initiation and spread vary among young, lodgepole pine stands? [2] What are the contributions of fuels, moisture and wind on fire behaviour? Sensitivity analysis indicated the greatest contributors to output variance were stand structure mediated wind attenuation, shrub fuel loads and 1000-h fuel moisture for fireline intensity; crown base height for crown fire initiation; and crown bulk density and 1-h fuel moisture for crown fire spread. Simulation results predicted crown fire (e.g. passive, conditional or active types) in over 90% of stands at 50th percentile moisture conditions and wind speeds greater than 3kmhr−1. We conclude that dense canopy characteristics heighten crown fire potential in young, postfire lodgepole pine forests even under less than extreme wind and fuel moisture conditions.


2001 ◽  
Vol 79 (11) ◽  
pp. 1349-1357 ◽  
Author(s):  
Cameron G Lait ◽  
Sarah L Bates ◽  
Karen K Morrissette ◽  
John H Borden ◽  
Allison R Kermode

Radiography is a valuable tool for assessing quality of conifer seeds, but it cannot differentiate between aborted seeds and seeds that have been emptied by western conifer seed bug (Leptoglossus occidentalis Heidemann) feeding. We tested three biochemical marker-based assays that were developed to identify L. occidentalis damage to seeds of Douglas-fir, Pseudostuga menziesii (Mirb.) Franco, for their use in lodgepole pine, Pinus contorta var. latifolia Engelmann. The three assays included measurement of storage protein reserve depletion, immunodetection of fragments of insoluble (crystalloid) storage proteins, and immunodetection of L. occidentalis salivary proteins. Aborted seeds contained significantly less soluble and insoluble protein than seeds that were fed on by L. occidentalis. Polyclonal antibodies raised against 11S globulin crystalloid proteins or L. occidentalis salivary gland extracts only immunoreacted with proteins in seeds exposed to L. occidentalis feeding. In a single-blind test, antibody raised against salivary-gland extracts correctly distinguished between undamaged full seeds, unfilled aborted seeds, and seeds fed on by L. occidentalis. Immunodetection of L. occidentalis salivary proteins was also performed on seeds of Abies amabilis Dougl. ex J. Forbes, Tsuga heterophylla (Raf.) Sarg., Picea sitchensis Bong (Carr.), Pinus ponderosa Lawson, and Pinus monticola Dougl. ex D. Don. For all species, immunoreactive polypeptides were only detected in seeds fed on by L. occidentalis. These biochemical marker-based techniques could help researchers and seed orchard managers estimate seed losses caused by L. occidentalis in commercial seed orchards and natural forest stands.Key words: Leptoglossus occidentalis, saliva, biochemical markers, polyclonal antibody, immunodetection, Pinus contorta.


Sign in / Sign up

Export Citation Format

Share Document