scholarly journals The significant symbiotic interactions between a native mycorrhizal fungi complex newly identified and the endemic tree Argania spinosa Skeels mediate growth, photosynthesis and enzymatic responses under drought stress conditions.

Author(s):  
El mostapha Ouatamamat ◽  
Said El Mrabet ◽  
Hanane Dounas ◽  
Bargaz Adnane ◽  
Robin Duponnois ◽  
...  

Argan tree (Argania spinosa skeels) is one of the most affected species by desertification and global warming. To advance knowledge on how this tree can withstand drought stress, Arbuscular mycorrhizal fungi (AMF) inoculation with a native complex, mainly formed of Glomus genus, was studied on a set of growth and physiological parameters. Under controlled conditions, inoculated and non- inoculated Argan seedlings were grown for three months under three water regimes (25%, 50%, 75% relatively to the field capacity of used soil substrate). Results showed that the Argan tree had different growth abilities to develop and withstand the various applied water limitations. The AMF complex stimulates growth and mineral nutrition of Argan seedlings under the different imposed levels of water deficiency). The Relative water content (RWC) in leaves, the hydric potential and the stomatal conductance in Argan leaves had shown a general improvement in inoculated seedlings compared to non-inoculated ones. Soluble sugar and proline contents significantly increased in non-inoculated compared with inoculated seedlings under water-limiting conditions (25%). This was similar to oxidative enzyme (Catalase, peoxydase, superoxide dismutase) whose activity increased significantly in drought stressed seedlings.

2015 ◽  
Vol 28 (4) ◽  
pp. 408-419 ◽  
Author(s):  
Zhilei Liu ◽  
Yuanjing Li ◽  
Lina Ma ◽  
Haichao Wei ◽  
Jianfeng Zhang ◽  
...  

Mitogen-activated protein kinase (MAPK) cascades play important roles in the stress response in both plants and microorganisms. The mycorrhizal symbiosis established between arbuscular mycorrhizal fungi (AMF) and plants can enhance plant drought tolerance, which might be closely related to the fungal MAPK response and the molecular dialogue between fungal and soybean MAPK cascades. To verify the above hypothesis, germinal Glomus intraradices (syn. Rhizophagus irregularis) spores and potted experiments were conducted. The results showed that AMF GiMAPKs with high homology with MAPKs from Saccharomyces cerevisiae had different gene expression patterns under different conditions (nitrogen starvation, abscisic acid treatment, and drought). Drought stress upregulated the levels of fungi and soybean MAPK transcripts in mycorrhizal soybean roots, indicating the possibility of a molecular dialogue between the two symbiotic sides of symbiosis and suggesting that they might cooperate to regulate the mycorrhizal soybean drought-stress response. Meanwhile, the changes in hydrogen peroxide, soluble sugar, and proline levels in mycorrhizal soybean as well as in the accelerated exchange of carbon and nitrogen in the symbionts were contributable to drought adaptation of the host plants. Thus, it can be preliminarily inferred that the interactions of MAPK signals on both sides, symbiotic fungus and plant, might regulate the response of symbiosis and, thus, improve the resistance of mycorrhizal soybean to drought stress.


2021 ◽  
Author(s):  
Jing Tao ◽  
Fengxin Dong ◽  
Yihan Wang ◽  
Hui Chen ◽  
Ming Tang

Abstract Background: Arbuscular mycorrhizal fungi (AMF) form a symbiotic relationship with host plants, which can promote plants to absorb more water and nutrients, and thus improve the stress resistance of plants. Our study aimed to investigate the effects of Rhizophagus irregularis on Populus simonii × P. nigra seedlings under drought stress. Results: The experiment was a completely random design with two water conditions (well-watered or drought stress) and two AMF treatments (inoculated with or without R. irregularis). Our results showed that mycorrhizal seedlings performed less oxidative damage and stronger tolerance of drought, which recorded higher photosynthesis and less concentrations of Malondialdehyde (MDA), H2O2, and proline under drought stress versus non-mycorrhizal seedlings. Under drought stress, AMF inoculation reduced soluble sugar concentration in leaves but promoted its accumulation in roots. The superoxide dismutase (SOD) activity in leaves and roots, and catalase (CAT) activity in roots of mycorrhizal seedlings were lower than non-mycorrhizal seedlings, but CAT activity in leaves of mycorrhizal seedlings was higher than non-mycorrhizal seedlings under drought stress. Drought stress and AMF inoculation both induced the expressions of MAPKs of P. simonii × P. nigra, but the expression patterns of MAPKs under four treatments were obviously different.Conclusions: Overall, our results demonstrated that mycorrhizal seedlings had less oxidative damage and stronger tolerance to drought. MAPKs expressions of P. simonii×P. nigra (PsnMAPKs) were induced by drought stress and AMF inoculation, and the expression patterns of PsnMAPKs in response to drought stress were different between mycorrhizal and non-mycorrhizal seedlings. Non-mycorrhizal seedlings may be adapted to drought by up-regulating MAPKs expressions leading to stomatal closure. Drought stress decreased serval PsnMAPKs expressions induced by AMF inoculation, which may be associated with mycorrhizal colonization.


Author(s):  
Ozede N. Igiehon ◽  
Olubukola O. Babalola

AbstractFood insecurity is a serious threat due to the increasing human population particularly in developing countries and may be minimized by the use of microbial inoculants. Also, the problems of excessive use of chemical fertilizers including the fact that most of the fertilizers are relatively non-affordable and that they also contaminate underground and surface water, which can increase the risk of blue baby syndrome in infants and stomach cancer in adults. There is therefore the need to harness a more cost-effective, eco-friendly and beneficial biological agents to improve crops productivity especially under drought conditions. Thus, in this study, the ability of rhizobia species and arbuscular mycorrhizal fungi (AMF) to enhance soybean tolerance to drought stress under water regimens of 100, 70 and 40% field capacity (FC) was investigated. It was observed that co-inoculation of soybean with Rhizobium spp. (R1+R3) as well as with Rhizobium spp. and mycorrhizal consortium (R1+R3MY) had significant impacts (P < 0.05) on soybean leaf relative water content and electrolyte leakage, respectively. The levels of proline increased mainly in microbially amended soybean exposed to drought stress. Plants inoculated with R1+R3MY showed the highest number of spore and % mycorrhization in all the water regimes. At 40% FC, R1+R3MY treatment was found to promote soybean growth compared to the non-inoculated plants. Similarly, at 40% FC, R1+R3MY inoculum had the greatest impacts on soybean pod number, seed number, seed fresh weight, highest seed number per pod and seed dry weight while at 70% water stress, significant impacts of R1MY inoculation were observed on pod number, pod fresh weight and seed dry weight. These results revealed that co-inoculation of rhizobia and mycorrhizal fungi can be harnessed biotechnologically to proffer solution to food insecurity.


Author(s):  
Shaimaa E. Abd-Elghany ◽  
Attaya A. Moustafa ◽  
Nasr H. Gomaa ◽  
Badr-eldin A. Hamed

Abstract Background Ocimum basilicum was grown under three levels of drought stress (100% Field capacity, 70% Field capacity, and 40% Field capacity). Half of the plants were inoculated with Arbuscular mycorrhiza and the other half was not inoculated. Arbuscular mycorrhizal fungi (AMF) were applied to improve plant growth and to alleviate drought stress on sweet basil. Results Drought Couse inhibition in the colonization of Arbuscular mycorrhiza, reduction in plant growth, decrease stomatal size increase stomatal density, a decline in soluble carbohydrates, accumulation of amino acids, proline, and glycine betaine, and reduction in some minerals such as P, K, and Na. Conclusions The effect of drought was alleviated by the application of inoculation with Arbuscular mycorrhiza.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abderrahim Boutasknit ◽  
Marouane Baslam ◽  
Mohamed Ait-El-Mokhtar ◽  
Mohamed Anli ◽  
Raja Ben-Laouane ◽  
...  

AbstractIn the current study, an eco-friendly management technology to improve young carob (Ceratonia siliqua L.) tree tolerance to water deficit was set up by using single or combined treatments of arbuscular mycorrhizal fungi (AMF) and/or compost (C). Two groups of young carob have been installed: (i) carob cultivated under well-watered conditions (WW; 70% field capacity (FC)) and (ii) where the plants were drought-stressed (DS; 35% FC) during 2, 4, 6, and 8 months. The effect of used biofertilizers on the course of growth, physiological (photosynthetic traits, water status, osmolytes, and mineral content), and biochemical (hydrogen peroxide (H2O2), oxidative damage to lipids (malondialdehyde (MDA), and membrane stability (MS)) traits in response to short- and long-term droughts were assessed. The dual application of AMF and C (C + AMF) boosted growth, physiological and biochemical parameters, and nutrient uptake in carob under WW and DS. After eight months, C + AMF significantly enhanced stomatal conductance by 20%, maximum photochemical efficiency of PSII by 7%, leaf water potential by 23%, chlorophyll and carotenoid by 40%, plant uptake of mineral nutrients (P by 75%, N by 46%, K+ by 35%, and Ca2+ by 40%), concentrations of soluble sugar by 40%, and protein content by 44% than controls under DS conditions. Notably, C + AMF reduced the accumulation of H2O2 and MDA content to a greater degree and increased MS. In contrast, enzyme activities (superoxide dismutase, catalase, peroxidase, and polyphenoloxidase) significantly increased in C + AMF plants under DS. Overall, our findings suggest that the pairing of C + AMF can mediate superior drought tolerance in young carob trees by increasing leaf stomatal conductance, cellular water content, higher solute concentration, and defense response against oxidative damage during the prolonged period of DS.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Dong Huang ◽  
Qian Wang ◽  
Zhijun Zhang ◽  
Guangquan Jing ◽  
Mengnan Ma ◽  
...  

AbstractDrought leads to reductions in plant growth and crop yields. Arbuscular mycorrhizal fungi (AMF), which form symbioses with the roots of the most important crop species, alleviate drought stress in plants. In the present work, we identified 14 GH3 genes in apple (Malus domestica) and provided evidence that MdGH3-2 and MdGH3-12 play important roles during AM symbiosis. The expression of both MdGH3-2 and MdGH3-12 was upregulated during mycorrhization, and the silencing of MdGH3-2/12 had a negative impact on AM colonization. MdGH3-2/12 silencing resulted in the downregulation of five genes involved in strigolactone synthesis, and there was a corresponding change in root strigolactone content. Furthermore, we observed lower root dry weights in RNAi lines under AM inoculation conditions. Mycorrhizal transgenic plants showed greater sensitivity to drought stress than WT, as indicated by their higher relative electrolytic leakage and lower relative water contents, osmotic adjustment ability, ROS scavenging ability, photosynthetic capacity, chlorophyll fluorescence values, and abscisic acid contents. Taken together, these data demonstrate that MdGH3-2/12 plays an important role in AM symbiosis and drought stress tolerance in apple.


2018 ◽  
Vol 5 (03) ◽  
Author(s):  
ARADHNA KUMARI ◽  
IM KHAN ◽  
ANIL KUMAR SINGH ◽  
SANTOSH KUMAR SINGH

Poplar clone Kranti was selected to assess the morphological, physiological and biochemical responses under drought at different levels of water stress, as it is a common clone used to be grown in Uttarakhand for making paper and plywood. The cuttings of Populus deltoides L. (clone Kranti) were exposed to four different watering regimes (100, 75, 50 and 25% of the field capacity) and changes in physiological and biochemical parameters related with drought tolerance were recorded. Alterations in physiological (i.e. decrease in relative water content) and biochemical parameters (i.e. increase in proline and soluble sugar content and build-up of malondialdehyde by-products) occurred in all the three levels of water stress, although drought represented the major determinant. Drought treatments (75%, 50% and 25% FC) decreased plant height, radial stem diameter, harvest index, total biomass content and RWC in all the three watering regimes compared to control (100% FC). Biochemical parameters like proline, soluble sugar and MDA content increased with severity and duration of stress, which helped plants to survive under severe stress. It was analyzed that for better wood yield poplar seedlings should avail either optimum amount of water (amount nearly equal to field capacity of soil) or maximum withdrawal up to 75% of field capacity up to seedling establishment period (60 days). Furthermore, this study manifested that acclimation to drought stress is related with the rapidity, severity, and duration of the drought event of the poplar species.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mohamed S. Sheteiwy ◽  
Dina Fathi Ismail Ali ◽  
You-Cai Xiong ◽  
Marian Brestic ◽  
Milan Skalicky ◽  
...  

Abstract Background The present study aims to study the effects of biofertilizers potential of Arbuscular Mycorrhizal Fungi (AMF) and Bradyrhizobium japonicum (B. japonicum) strains on yield and growth of drought stressed soybean (Giza 111) plants at early pod stage (50 days from sowing, R3) and seed development stage (90 days from sowing, R5). Results Highest plant biomass, leaf chlorophyll content, nodulation, and grain yield were observed in the unstressed plants as compared with water stressed-plants at R3 and R5 stages. At soil rhizosphere level, AMF and B. japonicum treatments improved bacterial counts and the activities of the enzymes (dehydrogenase and phosphatase) under well-watered and drought stress conditions. Irrespective of the drought effects, AMF and B. japonicum treatments improved the growth and yield of soybean under both drought (restrained irrigation) and adequately-watered conditions as compared with untreated plants. The current study revealed that AMF and B. japonicum improved catalase (CAT) and peroxidase (POD) in the seeds, and a reverse trend was observed in case of malonaldehyde (MDA) and proline under drought stress. The relative expression of the CAT and POD genes was up-regulated by the application of biofertilizers treatments under drought stress condition. Interestingly a reverse trend was observed in the case of the relative expression of the genes involved in the proline metabolism such as P5CS, P5CR, PDH, and P5CDH under the same conditions. The present study suggests that biofertilizers diminished the inhibitory effect of drought stress on cell development and resulted in a shorter time for DNA accumulation and the cycle of cell division. There were notable changes in the activities of enzymes involved in the secondary metabolism and expression levels of GmSPS1, GmSuSy, and GmC-INV in the plants treated with biofertilizers and exposed to the drought stress at both R3 and R5 stages. These changes in the activities of secondary metabolism and their transcriptional levels caused by biofertilizers may contribute to increasing soybean tolerance to drought stress. Conclusions The results of this study suggest that application of biofertilizers to soybean plants is a promising approach to alleviate drought stress effects on growth performance of soybean plants. The integrated application of biofertilizers may help to obtain improved resilience of the agro ecosystems to adverse impacts of climate change and help to improve soil fertility and plant growth under drought stress.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 149
Author(s):  
Mohammed Bouskout ◽  
Mohammed Bourhia ◽  
Mohamed Najib Al Feddy ◽  
Hanane Dounas ◽  
Ahmad Mohammad Salamatullah ◽  
...  

Agricultural yields are under constant jeopardy as climate change and abiotic pressures spread worldwide. Using rhizospheric microbes as biostimulants/biofertilizers is one of the best ways to improve agro-agriculture in the face of these things. The purpose of this experiment was to investigate whether a native arbuscular mycorrhizal fungi inoculum (AMF-complex) might improve caper (Capparis spinosa) seedlings’ nutritional status, their morphological/growth performance and photosynthetic efficiency under water-deficit stress (WDS). Thus, caper plantlets inoculated with or without an AMF complex (+AMF and −AMF, respectively) were grown under three gradually increasing WDS regimes, i.e., 75, 50 and 25% of field capacity (FC). Overall, measurements of morphological traits, biomass production and nutrient uptake (particularly P, K+, Mg2+, Fe2+ and Zn2+) showed that mycorrhizal fungi inoculation increased these variables significantly, notably in moderate and severe WDS conditions. The increased WDS levels reduced the photochemical efficiency indices (Fv/Fm and Fv/Fo) in −AMF plants, while AMF-complex application significantly augmented these parameters. Furthermore, the photosynthetic pigments content was substantially higher in +AMF seedlings than −AMF controls at all the WDS levels. Favorably, at 25% FC, AMF-colonized plants produce approximately twice as many carotenoids as non-colonized ones. In conclusion, AMF inoculation seems to be a powerful eco-engineering strategy for improving the caper seedling growth rate and drought tolerance in harsh environments.


Sign in / Sign up

Export Citation Format

Share Document