scholarly journals Mycorrhizal impact on Ocimum basilicum grown under drought stress

Author(s):  
Shaimaa E. Abd-Elghany ◽  
Attaya A. Moustafa ◽  
Nasr H. Gomaa ◽  
Badr-eldin A. Hamed

Abstract Background Ocimum basilicum was grown under three levels of drought stress (100% Field capacity, 70% Field capacity, and 40% Field capacity). Half of the plants were inoculated with Arbuscular mycorrhiza and the other half was not inoculated. Arbuscular mycorrhizal fungi (AMF) were applied to improve plant growth and to alleviate drought stress on sweet basil. Results Drought Couse inhibition in the colonization of Arbuscular mycorrhiza, reduction in plant growth, decrease stomatal size increase stomatal density, a decline in soluble carbohydrates, accumulation of amino acids, proline, and glycine betaine, and reduction in some minerals such as P, K, and Na. Conclusions The effect of drought was alleviated by the application of inoculation with Arbuscular mycorrhiza.

Biocelebes ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 1-9
Author(s):  
Wahyu Harso ◽  
Isna Isna ◽  
Yusran Yusran

Arbsucular mycorrhizal fungi promote plant growth by enhancing mineral uptake. Contribution degree of arbuscular mycorrhizal fungi to promote plant growth depend on species of plant-fungus association. The aim of this study was to compare the ability of three species of Glomus to promote maize plant growth. Maize plants were inoculated with 20 g inoculum of either Glomus deserticola, Glomus etunicatum, or Glomus clorum.  Inoculum was soil containing spore, hyphae and infected root. Maize plants without addition inoculum were also used as a control. Water availability in the soil as growing medium was maintained on 40% field capacity. The results showed that addition of inoculum from three species of Glomus increased average of maize plant shoot dry weight  although there was no statisticaly significant differences.  Maize plant inoculated with G. clorum had higher shoot dry weight than maize plant inoculated either with G. etunicatum or G. deserticola while root colonization by G. clorum was lowest.


2019 ◽  
Vol 20 (17) ◽  
pp. 4199 ◽  
Author(s):  
Ali Bahadur ◽  
Asfa Batool ◽  
Fahad Nasir ◽  
Shengjin Jiang ◽  
Qin Mingsen ◽  
...  

Arbuscular mycorrhizal fungi (AMF) establish symbiotic interaction with 80% of known land plants. It has a pronounced impact on plant growth, water absorption, mineral nutrition, and protection from abiotic stresses. Plants are very dynamic systems having great adaptability under continuously changing drying conditions. In this regard, the function of AMF as a biological tool for improving plant drought stress tolerance and phenotypic plasticity, in terms of establishing mutualistic associations, seems an innovative approach towards sustainable agriculture. However, a better understanding of these complex interconnected signaling pathways and AMF-mediated mechanisms that regulate the drought tolerance in plants will enhance its potential application as an innovative approach in environmentally friendly agriculture. This paper reviews the underlying mechanisms that are confidently linked with plant–AMF interaction in alleviating drought stress, constructing emphasis on phytohormones and signaling molecules and their interaction with biochemical, and physiological processes to maintain the homeostasis of nutrient and water cycling and plant growth performance. Likewise, the paper will analyze how the AMF symbiosis helps the plant to overcome the deleterious effects of stress is also evaluated. Finally, we review how interactions between various signaling mechanisms governed by AMF symbiosis modulate different physiological responses to improve drought tolerance. Understanding the AMF-mediated mechanisms that are important for regulating the establishment of the mycorrhizal association and the plant protective responses towards unfavorable conditions will open new approaches to exploit AMF as a bioprotective tool against drought.


Author(s):  
Ozede N. Igiehon ◽  
Olubukola O. Babalola

AbstractFood insecurity is a serious threat due to the increasing human population particularly in developing countries and may be minimized by the use of microbial inoculants. Also, the problems of excessive use of chemical fertilizers including the fact that most of the fertilizers are relatively non-affordable and that they also contaminate underground and surface water, which can increase the risk of blue baby syndrome in infants and stomach cancer in adults. There is therefore the need to harness a more cost-effective, eco-friendly and beneficial biological agents to improve crops productivity especially under drought conditions. Thus, in this study, the ability of rhizobia species and arbuscular mycorrhizal fungi (AMF) to enhance soybean tolerance to drought stress under water regimens of 100, 70 and 40% field capacity (FC) was investigated. It was observed that co-inoculation of soybean with Rhizobium spp. (R1+R3) as well as with Rhizobium spp. and mycorrhizal consortium (R1+R3MY) had significant impacts (P < 0.05) on soybean leaf relative water content and electrolyte leakage, respectively. The levels of proline increased mainly in microbially amended soybean exposed to drought stress. Plants inoculated with R1+R3MY showed the highest number of spore and % mycorrhization in all the water regimes. At 40% FC, R1+R3MY treatment was found to promote soybean growth compared to the non-inoculated plants. Similarly, at 40% FC, R1+R3MY inoculum had the greatest impacts on soybean pod number, seed number, seed fresh weight, highest seed number per pod and seed dry weight while at 70% water stress, significant impacts of R1MY inoculation were observed on pod number, pod fresh weight and seed dry weight. These results revealed that co-inoculation of rhizobia and mycorrhizal fungi can be harnessed biotechnologically to proffer solution to food insecurity.


Author(s):  
El mostapha Ouatamamat ◽  
Said El Mrabet ◽  
Hanane Dounas ◽  
Bargaz Adnane ◽  
Robin Duponnois ◽  
...  

Argan tree (Argania spinosa skeels) is one of the most affected species by desertification and global warming. To advance knowledge on how this tree can withstand drought stress, Arbuscular mycorrhizal fungi (AMF) inoculation with a native complex, mainly formed of Glomus genus, was studied on a set of growth and physiological parameters. Under controlled conditions, inoculated and non- inoculated Argan seedlings were grown for three months under three water regimes (25%, 50%, 75% relatively to the field capacity of used soil substrate). Results showed that the Argan tree had different growth abilities to develop and withstand the various applied water limitations. The AMF complex stimulates growth and mineral nutrition of Argan seedlings under the different imposed levels of water deficiency). The Relative water content (RWC) in leaves, the hydric potential and the stomatal conductance in Argan leaves had shown a general improvement in inoculated seedlings compared to non-inoculated ones. Soluble sugar and proline contents significantly increased in non-inoculated compared with inoculated seedlings under water-limiting conditions (25%). This was similar to oxidative enzyme (Catalase, peoxydase, superoxide dismutase) whose activity increased significantly in drought stressed seedlings.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1531
Author(s):  
Narcisa Urgiles-Gómez ◽  
María Eugenia Avila-Salem ◽  
Paúl Loján ◽  
Max Encalada ◽  
Leslye Hurtado ◽  
...  

Coffee is an important, high-value crop because its roasted beans are used to produce popular beverages that are consumed worldwide. Coffee plantations exist in over 70 countries and constitute the main economic activity of approximately 125 million people. Currently, there is global concern regarding the excessive use of agrochemicals and pesticides in agriculture, including coffee crops. This situation has motivated researchers, administrators, and farmers to seek ecologically friendly alternatives to decrease the use of synthetic fertilizers and pesticides. In the last decades, multiple studies of the rhizosphere, at the chemical, physical and biological levels, have improved our understanding of the importance of beneficial microorganisms to plant health and growth. This review aims to summarize the state of the use of plant growth-promoting microorganisms (PGPM) in coffee production, where the most extensively studied microorganisms are beneficial plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF). This review also contains information on PGPM, in regard to plantations at different latitudes, isolation techniques, mass multiplication, formulation methods, and the application of PGPM in nurseries, monoculture, and coffee agroforestry systems. Finally, this review focuses on relevant research performed during the last decade that can help us improve sustainable coffee production.


Sign in / Sign up

Export Citation Format

Share Document