Radial growth responses of post oak (Quercus stellata) to climate variability and management in southeastern Oklahoma, USA

Author(s):  
Arjun Adhikari ◽  
Ronald E. Masters ◽  
Henry D. Adams ◽  
Rodney E. Will

We investigated radial growth of post oak (Quercus stellata) growing in a range of stand structures (forest to savanna) created in 1984 by different harvesting and thinning treatments followed by different prescribed fire intervals. We related ring width index (RWI) to monthly and seasonal climate variables and time since fire to assess impacts of climate variability and interactions with management on radial growth. RWI of all treatments was positively correlated to minimum daily temperature the previous September and precipitation late spring/early summer the current-year, and negatively correlated to maximum daily temperatures and drought index late spring/early summer. June weather was most strongly correlated in four of five treatments. While stand structure affected absolute diameter growth, RWI of savanna and forest stands responded similarly to climate variability, and low intensity prescribed fire did not influence RWI. On average, 100 mm reduction in June precipitation decreased RWI by 8%, 1oC increase in previous-year September daily minimum temperature increased RWI by 3.5%, and 1oC increase in June maximum daily temperature decreased RWI by 3.7%. Therefore, negative effects of drought and warmer spring/summer temperatures may be reduced by longer growing seasons under warmer climate scenarios. However, management did not appear to influence RWI.

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 381
Author(s):  
J. Julio Camarero ◽  
Cristina Valeriano ◽  
Antonio Gazol ◽  
Michele Colangelo ◽  
Raúl Sánchez-Salguero

Background and Objectives—Coexisting tree and shrub species will have to withstand more arid conditions as temperatures keep rising in the Mediterranean Basin. However, we still lack reliable assessments on how climate and drought affect the radial growth of tree and shrub species at intra- and interannual time scales under semi-arid Mediterranean conditions. Materials and Methods—We investigated the growth responses to climate of four co-occurring gymnosperms inhabiting semi-arid Mediterranean sites in northeastern Spain: two tree species (Aleppo pine, Pinus halepensis Mill.; Spanish juniper, Juniperus thurifera L.) and two shrubs (Phoenicean juniper, Juniperus phoenicea L.; Ephedra nebrodensis Tineo ex Guss.). First, we quantified the intra-annual radial-growth rates of the four species by periodically sampling wood samples during one growing season. Second, we quantified the climate–growth relationships at an interannual scale at two sites with different soil water availability by using dendrochronology. Third, we simulated growth responses to temperature and soil moisture using the forward, process-based Vaganov‒Shashkin (VS-Lite) growth model to disentangle the main climatic drivers of growth. Results—The growth of all species peaked in spring to early summer (May–June). The pine and junipers grew after the dry summer, i.e., they showed a bimodal growth pattern. Prior wet winter conditions leading to high soil moisture before cambium reactivation in spring enhanced the growth of P. halepensis at dry sites, whereas the growth of both junipers and Ephedra depended more on high spring–summer soil moisture. The VS-Lite model identified these different influences of soil moisture on growth in tree and shrub species. Conclusions—Our approach (i) revealed contrasting growth dynamics of co-existing tree and shrub species under semi-arid Mediterranean conditions and (ii) provided novel insights on different responses as a function of growth habits in similar drought-prone regions.


2001 ◽  
Vol 31 (6) ◽  
pp. 925-936 ◽  
Author(s):  
Antonio Lara ◽  
Juan Carlos Aravena ◽  
Ricardo Villalba ◽  
Alexia Wolodarsky-Franke ◽  
Brian Luckman ◽  
...  

Nothofagus pumilio (Poepp et Endl.) Krasser, is a deciduous tree species that grows in Chile and adjacent Argentina between 36 and 56°S, often forming the Andean tree line. This paper presents the first eight tree-ring chronologies from N. pumilio at its northern range limit in the central Andes of Chile (36–39°S) and the first precipitation reconstruction for this region. Samples were taken from upper tree-line stands (1500–1700 m elevation) in three study areas: Vilches, Laguna del Laja, and Conguillío. Results indicate that, at the northern sites (Vilches and Laguna del Laja), the tree-ring growth of N. pumilio is positively correlated with late-spring and early summer precipitation and that higher temperatures reduce radial growth, probably because of an increase in evapotranspiration and decrease in water availability. At the southern Conguillío study area, radial growth was negatively correlated with late-spring and early summer precipitation. The presence of volcanic activity in this latter study area, which might have masked the climate signal, did not seem to have a significant influence on radial growth. A reconstruction of November–December (summer) precipitation for the period 1837–1996 from N. pumilio tree-ring chronologies accounted for 37% of instrumentally recorded precipitation variance. This is the first precipitation reconstruction from N. pumilio chronologies. Only temperature and snow cover have previously been reconstructed using this species. The reconstruction indicates that the driest and wettest 25-year periods within the past 160 years are 1890–1914 and 1917–1941, respectively.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1250
Author(s):  
J. Julio Camarero ◽  
Álvaro Rubio-Cuadrado

The quantification of climate–growth relationships is a fundamental step in tree-ring sciences. This allows the assessment of functional responses to climate warming, particularly in biodiversity and climate-change hotspots including the Mediterranean Basin. In this region, broadleaf tree and shrub species of pre-Mediterranean, subtropical origin, have to withstand increased aridification trends. However, they have not been widely studied to assess their long-term growth responses to climate and drought. Since these species evolved under less seasonal and wetter conditions than strictly Mediterranean species, we hypothesized that their growth would mainly respond to higher precipitation and water availability from spring to early summer. Here, we quantified climate–growth relationships in five of these broadleaf species showing different leaf phenology and wood type (Pistacia terebinthus L., Pistacia lentiscus L., Arbutus unedo L., Celtis australis L., and Laurus nobilis L.) by using dendrochronology. We calculated Pearson correlations between crossdated, indexed, mean ring width series of each species (chronologies) and monthly climate variables (mean temperature, total precipitation). We also calculated correlations between the species’ chronologies and a drought index on 7-day scales. Lastly, we compared the correlation analyses with “climwin” analyses based on an information-theoretic approach and subjected to cross-validation and randomization tests. As expected, the growth of all species was enhanced in response to wet and cool conditions during spring and early summer. In some species (P. lentiscus, A. unedo, C. australis,) high prior-winter precipitation also enhanced growth. Growth of most species strongly responded to 9-month droughts and the correlations peaked from May to July, except in L. nobilis which showed moderate responses. The “climwin” analyses refined the correlation analyses by (i) showing the higher explanatory power of precipitation (30%) vs. temperature (7%) models, (ii) selecting the most influential climate windows with June as the median month, and (iii) providing significant support to the precipitation model in the case of P. terebinthus confirming that the radial growth of this species is a robust proxy of hydroclimate variability. We argue that “climwin” and similar frameworks based on information-theoretic approaches should be applied by dendroecologists to critically assess and quantify climate–growth relationships in woody plants with dendrochronological potential.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 334
Author(s):  
Norbert Szymański ◽  
Sławomir Wilczyński

The present study identified the similarities and differences in the radial growth responses of 20 provenances of 51-year-old European larch (Larix decidua Mill.) trees from Poland to the climatic conditions at three provenance trials situated in the Polish lowlands (Siemianice), uplands (Bliżyn) and mountains (Krynica). A chronology of radial growth indices was developed for each of 60 European larch populations, which highlighted the interannual variations in the climate-mediated radial growth of their trees. With the aid of principal component, correlation and multiple regression analysis, supra-regional climatic elements were identified to which all the larch provenances reacted similarly at all three provenance trials. They increased the radial growth in years with a short, warm and precipitation-rich winter; a cool and humid summer and when high precipitation in late autumn of the previous year was noted. Moreover, other climatic elements were identified to which two groups of the larch provenances reacted differently at each provenance trial. In the lowland climate, the provenances reacted differently to temperature in November to December of the previous year and July and to precipitation in September. In the upland climate, the provenances differed in growth sensitivity to precipitation in October of the previous year and June–September. In the mountain climate, the provenances responded differently to temperature and precipitation in September of the previous year and to precipitation in February, June and September of the year of tree ring formation. The results imply that both climatic factors and origin (genotype), i.e., the genetic factor, mediate the climate–growth relationships of larch provenances.


2021 ◽  
Vol 298-299 ◽  
pp. 108297
Author(s):  
Jian Kang ◽  
Shaowei Jiang ◽  
Jacques C. Tardif ◽  
Hanxue Liang ◽  
Shaokang Zhang ◽  
...  

2005 ◽  
Vol 18 (23) ◽  
pp. 5011-5023 ◽  
Author(s):  
L. A. Vincent ◽  
T. C. Peterson ◽  
V. R. Barros ◽  
M. B. Marino ◽  
M. Rusticucci ◽  
...  

Abstract A workshop on enhancing climate change indices in South America was held in Maceió, Brazil, in August 2004. Scientists from eight southern countries brought daily climatological data from their region for a meticulous assessment of data quality and homogeneity, and for the preparation of climate change indices that can be used for analyses of changes in climate extremes. This study presents an examination of the trends over 1960–2000 in the indices of daily temperature extremes. The results indicate no consistent changes in the indices based on daily maximum temperature while significant trends were found in the indices based on daily minimum temperature. Significant increasing trends in the percentage of warm nights and decreasing trends in the percentage of cold nights were observed at many stations. It seems that this warming is mostly due to more warm nights and fewer cold nights during the summer (December–February) and fall (March–May). The stations with significant trends appear to be located closer to the west and east coasts of South America.


2017 ◽  
Vol 30 (18) ◽  
pp. 7125-7139 ◽  
Author(s):  
Nicholas J. Byrne ◽  
Theodore G. Shepherd ◽  
Tim Woollings ◽  
R. Alan Plumb

Abstract Statistical models of climate generally regard climate variability as anomalies about a climatological seasonal cycle, which are treated as a stationary stochastic process plus a long-term seasonally dependent trend. However, the climate system has deterministic aspects apart from the climatological seasonal cycle and long-term trends, and the assumption of stationary statistics is only an approximation. The variability of the Southern Hemisphere zonal-mean circulation in the period encompassing late spring and summer is an important climate phenomenon and has been the subject of numerous studies. It is shown here, using reanalysis data, that this variability is rendered highly nonstationary by the organizing influence of the seasonal breakdown of the stratospheric polar vortex, which breaks time symmetry. It is argued that the zonal-mean tropospheric circulation variability during this period is best viewed as interannual variability in the transition between the springtime and summertime regimes induced by variability in the vortex breakdown. In particular, the apparent long-term poleward jet shift during the early-summer season can be more simply understood as a delay in the equatorward shift associated with this regime transition. The implications of such a perspective for various open questions are discussed.


Sign in / Sign up

Export Citation Format

Share Document