scholarly journals Evaluation of the mixed effects model and quantile regression approaches for predicting tree height in larch (Larix olgensis) plantations in northeastern China

Author(s):  
Longfei Xie ◽  
Faris Rafi Almay Widagdo ◽  
Zheng Miao ◽  
Lihu Dong ◽  
Fengri Li

Tree height (<i>H</i>) is one of the most important tree variables and is widely used in growth and yield models, and its measurement is often time-consuming and costly. Hence, height-diameter (H-D) models have become a great alternative, providing easy-to-use and accurate tools for <i>H</i> prediction. In this study, H-D models were developed for <i>Larix olgensis</i> in Northeast China. The Chapman-Richards function with three predictors (diameter at breast height, dominant tree height, and relative size of individual trees) performed best. Nonlinear mixed effects (NLME) models and nonlinear quantile regressions (NQR9, 9 quantiles; NQR5, 5 quantiles; and NQR3, 3 quantiles) were further used and improved the generalized H-D model, successfully providing accurate <i>H</i> predictions. In addition, the <i>H</i> predictions were calibrated using several measurements from subsamples, which were obtained from different sampling designs and sizes. The results indicated that the predictive accuracy was higher when calibrated by using any number of height measurements for the NLME model and more than 3 height measurements for the NQR3, NQR5 and NQR9 models. The best sampling strategy for the NLME and NQR models involved sampling the medium-sized trees. Overall, the newly developed H-D models can provide highly accurate height predictions for <i>L. olgensis</i>.

1995 ◽  
Vol 25 (3) ◽  
pp. 413-424 ◽  
Author(s):  
R.L. Korol ◽  
S.W. Running ◽  
K.S. Milner

Current research suggests that projected climate change may influence the growth of individual trees. Therefore, growth and yield models that can respond to potential changes in climate must be developed, TREE-BGC, a variant of the ecosystem process model FOREST-BGC, calculates the cycling of carbon, water, and nitrogen in and through forested ecosystems. TREE-BGC allocates stand-level estimates of photosynthesis to "each tree using a competition algorithm that incorporates tree height, relative radiation-use efficiency, and absorbed photosynthetically active radiation, TREE-BGC simulated the growth of trees grown in a dense and an open stand of interior Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) near Kamloops, B.C. The competition algorithm dynamically allocated stand estimates of photosynthesis to individual trees, and the trees were grown using an allometric relationship between biomass increment and height and diameter increment. Asymptotic height growth and the changes in the height–diameter relationship with competition were also incorporated in the model algorithms. Sapwood and phloem volume were used to calculate maintenance respiration. Predicted reductions in diameter growth with stand density were similar to those observed in the study stands. Although the carbon balance of individual trees was not tested, simulated tree diameter increments and height increments were correlated with the actual measurements of tree diameter increment (r2 = 0.89) and tree height increment (r2 = 0.78) for the 5-year period (n = 352). Although the model did not work well with trees that had diameters <5 cm, the model would be appropriate for a user who required an accuracy of ± 0.03 m3•ha−1 for volume, ± 0.02 m2•ha−1 for basal area, or ± 0.4 m for tree height over a 5-year period.


2021 ◽  
Vol 13 (12) ◽  
pp. 2297
Author(s):  
Jonathon J. Donager ◽  
Andrew J. Sánchez Meador ◽  
Ryan C. Blackburn

Applications of lidar in ecosystem conservation and management continue to expand as technology has rapidly evolved. An accounting of relative accuracy and errors among lidar platforms within a range of forest types and structural configurations was needed. Within a ponderosa pine forest in northern Arizona, we compare vegetation attributes at the tree-, plot-, and stand-scales derived from three lidar platforms: fixed-wing airborne (ALS), fixed-location terrestrial (TLS), and hand-held mobile laser scanning (MLS). We present a methodology to segment individual trees from TLS and MLS datasets, incorporating eigen-value and density metrics to locate trees, then assigning point returns to trees using a graph-theory shortest-path approach. Overall, we found MLS consistently provided more accurate structural metrics at the tree- (e.g., mean absolute error for DBH in cm was 4.8, 5.0, and 9.1 for MLS, TLS and ALS, respectively) and plot-scale (e.g., R2 for field observed and lidar-derived basal area, m2 ha−1, was 0.986, 0.974, and 0.851 for MLS, TLS, and ALS, respectively) as compared to ALS and TLS. While TLS data produced estimates similar to MLS, attributes derived from TLS often underpredicted structural values due to occlusion. Additionally, ALS data provided accurate estimates of tree height for larger trees, yet consistently missed and underpredicted small trees (≤35 cm). MLS produced accurate estimates of canopy cover and landscape metrics up to 50 m from plot center. TLS tended to underpredict both canopy cover and patch metrics with constant bias due to occlusion. Taking full advantage of minimal occlusion effects, MLS data consistently provided the best individual tree and plot-based metrics, with ALS providing the best estimates for volume, biomass, and canopy cover. Overall, we found MLS data logistically simple, quickly acquirable, and accurate for small area inventories, assessments, and monitoring activities. We suggest further work exploring the active use of MLS for forest monitoring and inventory.


2018 ◽  
Vol 53 (10) ◽  
pp. 1109-1118
Author(s):  
Reginaldo Antonio Medeiros ◽  
Haroldo Nogueira de Paiva ◽  
Flávio Siqueira D’Ávila ◽  
Helio Garcia Leite

Abstract: The objective of this work was to evaluate the growth and yield of teak (Tectona grandis) stands at different spacing and in different soil classes. Twelve spacing were evaluated in an Inceptisol and Oxisol, in plots with an area of 1,505 or 1,548 m2, arranged in a completely randomized design with nine replicates. The teak trees were measured at 26, 42, 50, and 78 months of age. Total tree height was less affected by spacing. Mean square diameter was greater in wider spacing, whereas basal area and total volume with bark were greater in closer spacing. An increase in volume with bark per tree was observed with the increase of useful area per plant. For teak trees, growth stagnation happens earlier, the growth rate is higher in closer spacing, and the plants grow more in the Inceptisol than in the Oxisol.


1993 ◽  
Vol 8 (1) ◽  
pp. 24-27
Author(s):  
K. Leroy Dolph ◽  
Gary E. Dixon

Abstract Erroneous predictions of forest growth and yield may result when computer simulation models use extrapolated data in repeated or long-term projections or if the models are used outside the range of data on which they were built. Bounding functions that limit the predicted diameter and height growth of individual trees to maximum observed values were developed to constrain these erroneous predictions in a forest growth and yield simulator. Similar techniques could be useful for dealing with extrapolated data in other types of simulation models. West. J. Appl. For. 8(1):24-27.


2009 ◽  
Vol 33 (4) ◽  
pp. 164-170 ◽  
Author(s):  
Daniel Leduc ◽  
Jeffery Goelz

Abstract Tree height is a critical component of a complete growth-and-yield model because it is one of the primary components used in volume calculation. To develop an equation to predict total height from dbh for longleaf pine (Pinus palustris Mill.) plantations in the West Gulf region, many different sigmoidal curve forms, weighting functions, and ways of expressing height and diameter were explored. Most of the functional forms tried produced very similar results, but ultimately the form developed by Levakovic was chosen as best. Another useful result was that scaling diameters by the quadratic mean diameter on a plot and height by the average height of dominant and codominant trees in the target stand resulted in dramatically better fits than using these variables in their raw forms.


1987 ◽  
Vol 17 (11) ◽  
pp. 1466-1470 ◽  
Author(s):  
K. E. Lowell ◽  
R. J. Mitchell

Logistic regression analysis can be used to estimate the probability of a binary event. In forestry, its use largely has been limited to predicting the probability of mortality of individual trees. However, the potential for broader application in forest growth and yield modelling has largely been overlooked. A logistic model to predict the probability that a tree will attain a specified future diameter can be produced by establishing a series of growth "success" criteria. Given the initial diameter distribution of a forest stand, a future diameter distribution and stand characteristics can be estimated probabilistically by estimating the proportion of stems in each diameter class of the distribution which attains a specified future diameter (the "success" criterion) and the proportion which fails to achieve at least zero growth (i.e., mortality). Using permanent plot data, such a logistic model was calibrated and validated for an oak–hickory forest in southeastern Missouri. Validation indicated that the model performs satisfactorily (estimates are unbiased) for individual trees over a 5-year prediction period, and for stand characteristics over 5-, 10-, 15-, and 20-year prediction periods though precision suffers as prediction period lengthens.


1998 ◽  
Vol 6 (A) ◽  
pp. A117-A123 ◽  
Author(s):  
L. R. Schimleck ◽  
A. J. Michell ◽  
C. A. Raymond ◽  
A. Muneri

In Australia, considerable effort has been directed at improving the pulp yield of plantation grown trees through tree breeding programs. However, an improvement in pulp yield relies on the assessment of large numbers of trees. Traditional methods of assessment are expensive, time consuming and destructive, inhibiting their use. Cores can be extracted non-destructively from standing trees using TRECOR, a handheld motor driven drill. The cores are milled, their near-infrared spectra obtained and pulp yield estimated using an appropriate calibration model. The height at which the core is taken is very important. It must represent the whole tree and sampling must be easy and practical. The longitudinal and radial (within-tree) variation of pulp yield for 15 Eucalyptus nitens trees was examined using near-infrared (NIR) spectroscopy. The trees were taken from three families (five trees per family) selected for giving high, medium and low pulp yields respectively. Three trees (one from each family) were examined in detail. Maps of within-tree variation of pulp yield were developed. Pulp yield was found to be highly variable within individual trees and between trees of the same family. The yield of samples from 10% of tree height (approximately 2.2 m) gave the best correlation with whole-tree yield. Samples from 5% of tree height (approximately 1.1 m) gave a slightly lower correlation but provided a more convenient sampling height. Ten Eucalyptus globulus and ten E. nitens trees growing on five sites in Australia were used to examine the longitudinal variation of pulp yield. Trees from sites in Tasmania, Western Australia and Victoria were sampled. The optimal sampling height for E. globulus was 1.1 m. No single sampling height could be recommended for E. nitens due to large site effects.


2018 ◽  
Vol 48 (3) ◽  
pp. 179-190 ◽  
Author(s):  
Henrique Luis Godinho CASSOL ◽  
Yosio Edemir SHIMABUKURO ◽  
João Manuel de Brito CARREIRAS ◽  
Elisabete Caria MORAES

ABSTRACT This paper presents a novel approach for estimating the height of individual trees in secondary forests at two study sites: Manaus (central Amazon) and Santarém (eastern Amazon) in the Brazilian Amazon region. The approach consists of adjusting tree height-diameter at breast height (H:DBH) models in each study site by ecological species groups: pioneers, early secondary, and late secondary. Overall, the DBH and corresponding height (H) of 1,178 individual trees were measured during two field campaigns: August 2014 in Manaus and September 2015 in Santarém. We tested the five most commonly used log-linear and nonlinear H:DBH models, as determined by the available literature. The hyperbolic model: H = a.DBH/(b+DBH) was found to present the best fit when evaluated using validation data. Significant differences in the fitted parameters were found between pioneer and secondary species from Manaus and Santarém by F-test, meaning that site-specific and also ecological-group H:DBH models should be used to more accurately predict H as a function of DBH. This novel approach provides specific equations to estimate height of secondary forest trees for particular sites and ecological species groups. The presented set of equations will allow better biomass and carbon stock estimates in secondary forests of the Brazilian Amazon.


1999 ◽  
Vol 14 (4) ◽  
pp. 186-193 ◽  
Author(s):  
Shongming Huang

Abstract Using the felled tree data, ecoregion-based height-diameter models were developed for lodgepole pine (Pinus contorta var. latifolia) in Alberta. A large number of height-diameter functions were evaluated, and the Chapman-Richards function was found to produce some of the most satisfactory fits. Residual analysis was conducted to identify the error structure of the models. A weighting factor of wi = 1/Di was found appropriate for achieving the equal error variance assumption. Differences of the height-diameter models among different ecoregions were examined and tested using the nonlinear extra sum of squares method. Most height-diameter relationships were found to be different among different ecoregions. Ecoregions of similar height-diameter relationships were combined to provide a composite model to facilitate the practical use of such relationships. West. J. Appl. For. 14(4):186-193.


Sign in / Sign up

Export Citation Format

Share Document