Development of an indirect ELISA based on a truncated S protein of the porcine epidemic diarrhea virus

2015 ◽  
Vol 61 (11) ◽  
pp. 811-817 ◽  
Author(s):  
Yufeng Li ◽  
Fangyuan Zheng ◽  
Baochao Fan ◽  
Hassan Mushtaq Muhammad ◽  
Yao Zou ◽  
...  

Porcine epidemic diarrhea (PED) is a highly contagious, enteric disease of swine caused by the porcine epidemic diarrhea virus (PEDV). To find a suitable ELISA method to assess the infection of PEDV and the effectiveness of vaccines, we developed and evaluated an indirect enzyme-linked immunosorbent assay (iELISA) based on a truncated recombinant spike (S) protein expressed in Escherichia coli. The parameters of the iELISA were optimized, and the cutoff value determined as 0.259 by analyzing optical density (OD) values of 80 PEDV negative sera confirmed by western blot. Repeatability tests revealed that the coefficients of variation of positive sera within and between runs were both less than 10%. Cross-reactivity assays demonstrated that iELISA was PEDV-specific. A virus neutralization test with sera of 7 different OD values showed a positive correlation between the OD values and virus neutralization. The results suggest this iELISA is specific, sensitive, and repeatable. Further studies should focus on the relationship between OD values of sera and its virus neutralization.

Author(s):  
Qi-long Qiao ◽  
Ning Li ◽  
Ming-zhen Song ◽  
Jing Chen ◽  
Pan pan Yang ◽  
...  

Porcine epidemic diarrhea virus (PEDV) strains have been clarified into two genotypes, G1 and G2, based on the sequence of the spike (S) gene. Amino acid mutations that distinguish the two PEDV genotypes were mostly located in the N-terminal domain (NTD) (aa 1-380) of S protein. The fact of increased outbreaks of G2 subtype PEDV and the failure of G1 subtype PEDV strain (CV777)-based vaccine in China since 2010 suggested that multiple amino acid mutations located in the NTD altered the antigenicity of S protein. To determine the role of the NTD of S protein in the antigenicity difference, the NTD of the CV777 vaccine strain (G1) and CH/ZMDZY/11 strain (G2) was expressed in E. coli, respectively. polyclonal antibodies (PAbs) against genotype-specific S proteins were prepared by immunizing BALB/c mice using purified S proteins. Antigenicity was systematically compared by detection of PAbs against two genotype PEDV strains and purified S proteins using Western blot, indirect enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), and serum cross-neutralization assay (SN). Consistent with the multiple amino acid mutations in the NTD of S protein, different antigenic cross-reactivity between the two genotypes was demonstrated. There was six-fold and more than twenty-fold difference in ELISA and SN titer between anti-CV777 S protein antibodies against G1 and G2 subtype strains, respectively. There was twofold and eight-fold difference in ELISA and SN titer between anti-ZMDZY S protein antibodies against G1 and G2 genotype strains, respectively. The results proved that the NTD of S protein contributes to the antigenicity difference between PEDV genotypes G1 and G2, and highlighted a G2 strain should be used to develop a vaccine for providing better protection against prevalent genotype of PEDV.


1998 ◽  
Vol 5 (3) ◽  
pp. 412-414 ◽  
Author(s):  
Franco Guscetti ◽  
Curzio Bernasconi ◽  
Kurt Tobler ◽  
Kristien Van Reeth ◽  
Andreas Pospischil ◽  
...  

ABSTRACT An immunohistochemistry method using formalin-fixed tissues, a direct immunofluorescence method using cryostat sections, an enzyme-linked immunosorbent assay (ELISA), and a PCR method were compared for diagnosis in a litter of weaned pigs that had been experimentally inoculated with wild-type porcine epidemic diarrhea virus (PEDV) and killed between 6 and 60 h after onset of diarrhea. The immunohistochemistry method proved to be as reliable as direct immunofluorescence for diagnosis of PEDV in tissues collected postmortem. The good reliability of ELISA for investigating clinical samples was confirmed, whereas the PCR method used was ineffective.


2018 ◽  
Vol 93 (2) ◽  
Author(s):  
Yixuan Hou ◽  
Tea Meulia ◽  
Xiang Gao ◽  
Linda J. Saif ◽  
Qiuhong Wang

ABSTRACTPorcine epidemic diarrhea virus (PEDV) causes high mortality in neonatal piglets. The PEDV spike (S) protein contains two intracellular sorting motifs, YxxΦ (tyrosine-based motif YEVF or YEAF) and KVHVQ at the cytoplasmic tail, yet their functions have not been fully elucidated. Some Vero cell-adapted and/or attenuated PEDV variants contain ablations in these two motifs. We hypothesized that these motifs contribute to viral pathogenicity. By transiently expressing PEDV S proteins with mutations in the motifs, we confirmed that the motif KVHVQ is involved in retention of the S proteins in the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC). In addition, we showed that the YxxΦ motif triggers endocytosis of S proteins. These two motifs synergistically regulate the level of S expressed on the cell surface. To investigate their role in viral pathogenicity, we generated three recombinant PEDVs by introducing deletions or a mutation in the two motifs of the infectious clone of PEDV PC22A strain (icPC22A): (i) icΔ10aa (ΔYxxΦEKVHVQ), (ii) icΔ5aa (ΔKVHVQ), and (iii) icYA (Y1378A, to an inactivated motif, AEVF). Infection of Vero cells with icΔ10aa resulted in larger syncytia and more virions, with reduced numbers of S protein projections on the surface compared with icPC22A. Furthermore, we orally inoculated five groups of 5-day-old gnotobiotic piglets with the three mutants, icPC22A, or a mock treatment. Mutant icΔ10aa caused less severe diarrhea rate and significantly milder intestinal lesions than icPC22A, icΔ5aa, and icYA. These data suggest that the deletion of both motifs can reduce the virulence of PEDV in piglets.IMPORTANCEMany coronaviruses (CoVs) possess conserved motifs YxxΦ and/or KxHxx/KKxx in the cytoplasmic tail of the S protein. The KxHxx/KKxx motif has been identified as the ER retrieval signal, but the function of the YxxΦ motif in the intracellular sorting of CoV S proteins remains controversial. In this study, we showed that the YxxΦ of PEDV S protein is an endocytosis signal. Furthermore, using reverse genetics technology, we evaluated its role in PEDV pathogenicity in neonatal piglets. Our results explain one attenuation mechanism of Vero cell-adapted PEDV variants lacking functional YxxΦ and KVHVQ motifs. Knowledge from this study may aid in the design of efficacious live attenuated vaccines against PEDV, as well as other CoVs bearing the same motif in their S protein.


2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Ohnmar Myint ◽  
Ayako Yoshida ◽  
Satoshi Sekiguchi ◽  
Nguyen Van Diep ◽  
Naoyuki Fuke ◽  
...  

Abstract Background Porcine epidemic diarrhea virus (PEDV) infection is a highly contagious infectious disease causing watery diarrhea, vomiting, dehydration and high mortality rate in newborn piglets. PEDV infection can cause high economic losses in pig industry. In Japan, a PEDV outbreak occurred with high mortality from 2013 to 2015. Even though until now, PEDV infection occurs sporadically. For the control and monitoring of PEDV infection, not only symptomatic pigs, but also asymptomatic pigs should be identified. The objective of this study is to develop and optimize novel indirect ELISA as a simple, rapid, sensitive and specific method for the detection of anti-PEDV antibodies and evaluate the efficacy of the assay as a diagnostic method for PED. Results One hundred sixty-two serum samples, consisting of 81 neutralization test (NT) positive and 81 NT negative sera, were applied to the assay. Indirect ELISA test based on whole virus antigen (NK94P6 strain) derived from Vero cell culture was evaluated by receiver operating characteristic (ROC) analysis with neutralization test (NT) as a reference method, and cut-off value was determined as 0.320 with sensitivity and specificity of 92.6 and 90.1%, respectively. The area under curve (AUC) was 0.949, indicating excellent accuracy of indirect ELISA test. There was significant positive correlation between indirect ELISA and neutralization test (R = 0.815, P < 0.05). Furthermore, the kappa statics showed the excellent agreement between these two tests (kappa value = 0.815). In addition, the sensitivity and specificity of preserved plates with different periods (1 day, 2 weeks, 1, 2, 3, 4, 5 and 6 months) after drying antigen coated plates were 100% and 80–100%, respectively. Conclusions The developed indirect ELISA test in our study would be useful as a reliable test for serological survey and disease control of PEDV infection, and our pre-antigen coated ELISA plates can be preserved at 4 °C until at least 6 months.


2021 ◽  
Author(s):  
Yubei Tan ◽  
Limeng Sun ◽  
Gang Wang ◽  
Yuejun Shi ◽  
Wanyu Dong ◽  
...  

Porcine epidemic diarrhea virus (PEDV) is an enteric pathogen in the swine industry, causing high mortality in neonatal piglets. Efficient PEDV infection usually relies on the presence of trypsin, yet the mechanism of trypsin dependency is ambiguous. Here, we identified two PEDV strains, trypsin-enhanced YN200 and trypsin-independent DR13, in which the spike (S) protein of YN200 exhibits a stronger ability to induce syncytium formation and cleaved by trypsin than that of DR13. Using a full-length infectious YN200 cDNA clone, we confirmed that the S protein is a trypsin dependency determinant by comparison of rYN200 and rYN200-SDR13. To explore the trypsin-associated sites of the YN200 S protein, we then constructed a series of mutations adjacent to the fusion peptide. The results show that the putative S2’ cleavage site (R892G) is not the determinant for virus trypsin dependency. Hence, we generated viruses carrying chimeric S proteins: the S1 subunit, S2 subunit, and S2720∼892 aa domain (NS2’) were individually replaced by the corresponding DR13 sequences. Intriguingly, only the S2 substitution, not the S1 or NS2’ substitutions, provides trypsin-independent growth of YN200. Additionally, the NS2’ recombinant virus significantly abrogated effective infection, indicating a vital role for NS2’ in viral entry. These findings suggest that the trypsin dependency of PEDV is mainly controlled by mutations in the S2 subunit rather than directly trypsin cleavage site. Importance With the emergence of new variants, PEDV remains a major problem in the global swine industry. Efficient PEDV infection usually requires trypsin, while the mechanism of trypsin dependency is complex. Here, we used two PEDV strains, trypsin-enhanced YN200 and trypsin-independent DR13, and results showed that the S protein determined PEDV trypsin dependency by using a reverse genetic system of YN200. The S2 subunit was verified as the main portion of PEDV trypsin dependency, though the putative S2’ site mutation cannot render trypsin-independent growth of YN200. Finally, these results provide some different insight to the PEDV trypsin dependency and might inspire vaccine development.


2017 ◽  
Vol 91 (14) ◽  
Author(s):  
Yixuan Hou ◽  
Chun-Ming Lin ◽  
Masaru Yokoyama ◽  
Boyd L. Yount ◽  
Douglas Marthaler ◽  
...  

ABSTRACT We previously isolated a porcine epidemic diarrhea virus (PEDV) strain, PC177, by blind serial passaging of the intestinal contents of a diarrheic piglet in Vero cell culture. Compared with the highly virulent U.S. PEDV strain PC21A, the tissue culture-adapted PC177 (TC-PC177) contains a 197-amino-acid (aa) deletion in the N-terminal domain of the spike (S) protein. We orally inoculated neonatal, conventional suckling piglets with TC-PC177 or PC21A to compare their pathogenicities. Within 7 days postinoculation, TC-PC177 caused mild diarrhea and lower fecal viral RNA shedding, with no mortality, whereas PC21A caused severe clinical signs and 55% mortality. To investigate whether infection with TC-PC177 can induce cross-protection against challenge with a highly virulent PEDV strain, all the surviving piglets were challenged with PC21A at 3 weeks postinoculation. Compared with 100% protection in piglets initially inoculated with PC21A, 88% and 100% TC-PC177- and mock-inoculated piglets had diarrhea following challenge, respectively, indicating incomplete cross-protection. To investigate whether this 197-aa deletion was the determinant for the attenuation of TC-PC177, we generated a mutant (icPC22A-S1Δ197) bearing the 197-aa deletion from an infectious cDNA clone of the highly virulent PEDV PC22A strain (infectious clone PC22A, icPC22A). In neonatal gnotobiotic pigs, the icPC22A-S1Δ197 virus caused mild to moderate diarrhea, lower titers of viral shedding, and no mortality, whereas the icPC22A virus caused severe diarrhea and 100% mortality. Our data indicate that deletion of this 197-aa fragment in the spike protein can attenuate a highly virulent PEDV, but the virus may lose important epitopes for inducing robust protective immunity. IMPORTANCE The emerging, highly virulent PEDV strains have caused substantial economic losses worldwide. However, the virulence determinants are not established. In this study, we found that a 197-aa deletion in the N-terminal region of the S protein did not alter virus (TC-PC177) tissue tropism but reduced the virulence of the highly virulent PEDV strain PC22A in neonatal piglets. We also demonstrated that the primary infection with TC-PC177 failed to induce complete cross-protection against challenge by the highly virulent PEDV PC21A, suggesting that the 197-aa region may contain important epitopes for inducing protective immunity. Our results provide an insight into the role of this large deletion in virus propagation and pathogenicity. In addition, the reverse genetics platform of the PC22A strain was further optimized for the rescue of recombinant PEDV viruses in vitro. This breakthrough allows us to investigate other virulence determinants of PEDV strains and will provide knowledge leading to better control PEDV infections.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Akitsu Masuda ◽  
Jae Man Lee ◽  
Takeshi Miyata ◽  
Takeru Ebihara ◽  
Kohei Kakino ◽  
...  

AbstractPorcine epidemic diarrhea virus (PEDV) is a highly infectious pathogen of watery diarrhea that causes serious economic loss to the swine industry worldwide. Especially because of the high mortality rate in neonatal piglets, a vaccine with less production cost and high protective effect against PEDV is desired. The intrinsically assembled homotrimer of spike (S) protein on the PEDV viral membrane contributing to the host cell entry is a target of vaccine development. In this study, we designed trimerized PEDV S protein for efficient production in the silkworm-baculovirus expression vector system (silkworm-BEVS) and evaluated its immunogenicity in the mouse. The genetic fusion of the trimeric motif improved the expression of S protein in silkworm-BEVS. A small-scale screening of silkworm strains to further improve the S protein productivity finally achieved the yield of about 2 mg from the 10 mL larval serum. Mouse immunization study demonstrated that the trimerized S protein could elicit strong humoral immunity, including the S protein-specific IgG in the serum. These sera contained neutralizing antibodies that can protect Vero cells from PEDV infection. These results demonstrated that silkworm-BEVS provides a platform for the production of trimeric S proteins, which are promising subunit vaccines against coronaviruses such as PEDV.


Sign in / Sign up

Export Citation Format

Share Document