scholarly journals Soil microbial communities of three grassland ecosystems in the Bayinbuluke, China

2018 ◽  
Vol 64 (3) ◽  
pp. 209-213 ◽  
Author(s):  
Keqiang Shao ◽  
Guang Gao

The microbial community plays an important role in soil nutrient cycles and energy transformations in alpine grassland. In this study, we investigated the composition of the soil microbial community collected from alpine cold swamp meadow (ASM), alpine cold meadow (AM), and alpine cold desert steppe (ADS) within the Bayinbuluke alpine grassland, China, using Illumina amplicon sequencing. Of the 147 271 sequences obtained, 36 microbial phyla or groups were detected. The results showed that the ADS had lower microbial diversity than the ASM and AM, as estimated by the Shannon index. The Verrucomicrobia, Chloroflexi, Planctomycetes, Proteobacteria, and Actinobacteria were the predominant phyla in all 3 ecosystems. Particularly, Thaumarchaeota was only abundant in ASM, Bacteroidetes in AM, and Acidobacteria in ADS. Additionally, the predominant genus also differed with each ecosystem. Candidatus Nitrososphaera was predominant in ADS, the Pir4 lineage in ASM, and Sphingomonas in AM. Our results indicated that the soil microbial community structure was different for each grassland ecosystem in the Bayinbuluke.

el–Hayah ◽  
2012 ◽  
Vol 1 (4) ◽  
Author(s):  
Prihastuti Prihastuti

<p>Soils are made up of organic and an organic material. The organic soil component contains all the living creatures in the soil and the dead ones in various stages of decomposition.  Biological activity in soil helps to recycle nutrients, decompose organic matter making nutrient available for plant uptake, stabilize humus, and form soil particles.<br />The extent of the diversity of microbial in soil is seen to be critical to the maintenance of soil health and quality, as a wide range of microbial is involved in important soil functions.  That ecologically managed soils have a greater quantity and diversity of soil microbial. The two main drivers of soil microbial community structure, i.e., plant type and soil type, are thought to exert their function in a complex manner. The fact that in some situations the soil and in others the plant type is the key factor determining soil microbial diversity is related to their complexity of the microbial interactions in soil, including interactions between microbial and soil and microbial and plants. <br />The basic premise of organic soil stewardship is that all plant nutrients are present in the soil by maintaining a biologically active soil environment. The diversity of microbial communities has on ecological function and resilience to disturbances in soil ecosystems. Relationships are often observed between the extent of microbial diversity in soil, soil and plant quality and ecosystem sustainability. Agricultural management can be directed toward maximizing the quality of the soil microbial community in terms of disease suppression, if it is possible to shift soil microbial communities.</p><p>Keywords: structure, microbial, implication, sustainable agriculture<br /><br /></p>


1999 ◽  
Vol 89 (10) ◽  
pp. 920-927 ◽  
Author(s):  
Mark Mazzola

Changes in the composition of soil microbial communities and relative disease-suppressive ability of resident microflora in response to apple cultivation were assessed in orchard soils from a site possessing trees established for 1 to 5 years. The fungal community from roots of apple seedlings grown in noncultivated orchard soil was dominated by isolates from genera commonly considered saprophytic. Plant-pathogenic fungi in the genera Phytophthora, Pythium, and Rhizoctonia constituted an increasing proportion of the fungal community isolated from seedling roots with increasing orchard block age. Bacillus megaterium and Burkholderia cepacia dominated the bacterial communities recovered from noncultivated soil and the rhizosphere of apple seedlings grown in orchard soil, respectively. Populations of the two bacteria in their respective habitats declined dramatically with increasing orchard block age. Lesion nematode populations did not differ among soil and root samples from orchard blocks of different ages. Similar changes in microbial communities were observed in response to planting noncultivated orchard soil to five successive cycles of ‘Gala’ apple seedlings. Pasteurization of soil had no effect on apple growth in noncultivated soil but significantly enhanced apple growth in third-year orchard block soil. Seedlings grown in pasteurized soil from the third-year orchard block were equal in size to those grown in noncultivated soil, demonstrating that suppression of plant growth resulted from changes in the composition of the soil microbial community. Rhizoctonia solani anastomosis group 5 (AG 5) had no effect on growth of apple trees in noncultivated soil but significantly reduced the growth of apple trees in soil from third-year orchard soil. Changes in the ability of the resident soil microflora to suppress R. solani AG 5 were associated with reductions in the relative populations of Burkholderia cepacia and Pseudomonas putida in the rhizosphere of apple.


2014 ◽  
Vol 675-677 ◽  
pp. 82-85
Author(s):  
Dong Xue ◽  
Xiang Dong Huang ◽  
Lian Xue

Understanding the chronological change in soil microbial community structure of tree peony garden ecosystem is important from ecological, environmental, and management perspectives. Soil samples were collected from three tree peony garden systems (5-, 12-, and 25-year-old tree peony gardens), and adjacent wasteland at Luoyang, Henan Province of China. Soil microbial community structure was analyzed by phospholipid fatty acid (PLFA) method. The bacterial and actinomycete PLFAs increased from the wasteland to 5-year-old tree peony garden and then decreased from the 5- to 25-year-old tree peony garden, and the fungal PLFA first increased and then decreased with the increasing planting years, with the greatest amount found in the 12-year-old tree peony garden. The conversion from the wasteland to tree peony garden resulted in a significant increase in Shannon index, Richness, and Evenness. However, with the succeeding development of tree peony garden ecosystems, Shannon index, Richness, and Evenness decreased from the 5- to 25-year-old tree peony garden.


2021 ◽  
Author(s):  
Dandan Xu ◽  
Jinfeng Ling ◽  
Pinggen Xi ◽  
Yani Zeng ◽  
Jianfan Zhang ◽  
...  

Abstract Organic mulching is an important management practice in agricultural production to improve soil quality, control crop pests and diseases and increase the biodiversity of soil microecosystem. However, the information about soil microbial diversity and composition in litchi plantation response to organic mulching and its attribution to litchi downy blight severity was limited. This study aimed to investigate the effect of organic mulching on litchi downy blight, and evaluate the biodiversity and antimicrobial potential of soil microbial community of litchi plantation soils under organic mulching. Our results showed that organic mulching could decrease the disease incidence in the litchi plantation. As a result of high-throughput 16S rRNA and ITS rDNA gene illumine sequencing, higher bacterial and fungal community diversity indexes were found in organic mulching soils, the relative abundance of norank f norank o Vicinamibacterales, norank f Vicinamibacteraceae, norank f Xanthobacteraceae, Unclassified c sordariomycetes, Aspergillus and Thermomyces were significant more than that in control soils. Isolation and analysis of antagonistic microorganism showed that 29 antagonistic bacteria strains and 37 antagonistic fungi strains were unique for mulching soils. Thus, we believe that organic mulching has a positive regulatory effect on the litchi downy blight and the soil microbial communities, and so, is more suitable for litchi plantation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245626
Author(s):  
Huan Niu ◽  
Ziqin Pang ◽  
Nyumah Fallah ◽  
Yongmei Zhou ◽  
Caifang Zhang ◽  
...  

The dynamics of soil microbial communities are important for plant health and productivity. Soil microbial communities respond differently to fertilization. Organic water soluble fertilizer is an effective soil improver, which can effectively improve soil nutrient status and adjust soil pH value. However, little is known about the effects of water soluble fertilizers on soil microbial community, and the combined effects on soil nutrients and sugarcane productivity. Therefore, this study sought to assess the effects of water soluble fertilizer (1,050 kg/hm2 (WS1), 1,650 kg/hm2 (WS2)) and mineral fertilizer (1,500 kg/hm2 (CK)) on the soil microbial community, soil nutrients and crop yield of sugarcane. The results showed that compared with CK, the application of water soluble fertilizers (WS1 and WS2) alleviated soil acidity, increased the OM, DOC, and AK contents in the soil, and further improved agronomic parameters and sugarcane yield. Both WS1 and WS2 treatments significantly increased the species richness of microorganisms, especially the enrichment of beneficial symbiotic bacteria such as Acidobacteria and Planctomycetes, which are more conducive to the healthy growth of plants. Furthermore, we found that soil nutrient contents were associated with soil microbial enrichment. These results indicate that water soluble fertilizer affects the enrichment of microorganisms by improving the nutrient content of the soil, thereby affecting the growth and yield of sugarcane. These findings therefore suggest that the utilization of water soluble fertilizer is an effective agriculture approach to improve soil fertility.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8857
Author(s):  
Jiaojiao Deng ◽  
Yongbin Zhou ◽  
Wenxu Zhu ◽  
You Yin

Grazing and litter removal can alter understory structure and composition after afforestation, posing a serious threat to sustainable forest development. Enclosure is considered to be an effective measure to restore degraded forest restoration. However, little is known about the dynamics of soil nutrients and microbial communities during the forest restoration process. In the present study, the effects of Arachis hypogaea (AH), Pinus sylvestris var. mongolica (PSM) and Pinus sylvestris var. mongolica with enclosure (PSME) on soil chemical properties and soil microbial communities were studied in Zhanggutai, Liaoning Province, China. The results showed that PSME could remarkably contribute to improve soil total C, total N and total P compared to PSM and AH. Additionally, PSM could clearly increase the soil bacterial community diversity and fungal Chao1 index and ACE index. Additionally, PSME could further increase soil Chao1 index and ACE index of soil bacteria. Soil total C, total N and available N were the main factors related to soil microbial diversity. Actinobacteria and Ascomycota were the predominant bacterial and fungal phyla, respectively. Specifically, PSME could increase the relative abundances of Actinobacteria, Gemmatimonadetes, Ascomycota and Mortierellomycota and decreased the relative abundances of Acidobacteria, Chloroflexi and Basidiomycota than PSM. PSM and PSME could clearly change soil microbial communities compared with AH and PSME could remarkably shift soil fungal communities than PSM. What’s more, the soil microbial community structure were affected by multiple edaphic chemical parameters. It can be seen that afforestation combined with enclosed management potentially regulate microbial properties through shifting the soil properties. This study can provide new ideas for further understanding the impact of enclosure on PSM and provide theoretical support for the management of PSM.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7343
Author(s):  
Ran Wu ◽  
Xiaoqin Cheng ◽  
Wensong Zhou ◽  
Hairong Han

Background Soil microbial communities and their associated enzyme activities play key roles in carbon cycling in terrestrial ecosystems. Soil microbial communities are sensitive to resource availability, but the mechanisms of microbial regulation have not been thoroughly investigated. Here, we tested the mechanistic relationships between microbial responses and multiple interacting resources. Methods We examined soil carbon properties, soil microbial community structure and carbon-related functions under nitrogen addition and plant inputs removal (litter removal (NL), root trench and litter removal (NRL)) in a pure Larix principis-rupprechtii plantation in northern China. Results We found that nitrogen addition affected the soil microbial community structure, and that microbial biomass increased significantly once 100 kg ha−1 a−1 of nitrogen was added. The interactions between nitrogen addition and plant inputs removal significantly affected soil bacteria and their enzymatic activities (oxidases). The NL treatment enhanced soil microbial biomass under nitrogen addition. We also found that the biomass of gram-negative bacteria and saprotrophic fungi directly affected the soil microbial functions related to carbon turnover. The biomass of gram-negative bacteria and peroxidase activity were key factors controlling soil carbon dynamics. The interactions between nitrogen addition and plant inputs removal strengthened the correlation between the hydrolases and soil carbon. Conclusions This study showed that nitrogen addition and plant inputs removal could alter soil enzyme activities and further affect soil carbon turnover via microbial regulation. The increase in soil microbial biomass and the microbial regulation of soil carbon both need to be considered when developing effective sustainable forest management practices for northern China. Moreover, further studies are also needed to exactly understand how the complex interaction between the plant and below-ground processes affects the soil microbial community structure.


2021 ◽  
Author(s):  
Dandan Xu ◽  
Jinfeng Ling ◽  
Fang Qiao ◽  
Pinggen Xi ◽  
Yani Zeng ◽  
...  

Abstract Background: Organic mulching is an important management practice in agricultural production to improve soil quality, control crop pests and diseases and increase the biodiversity of soil microecosystem. However, the information about soil microbial diversity and composition in litchi plantation response to organic mulching and its attribution to litchi downy blight severity was limited. This study aimed to investigate the effect of organic mulching on litchi downy blight, and evaluate the biodiversity and antimicrobial potential of soil microbial community of litchi plantation soils under organic mulching. Results: Organic mulching could decrease the disease incidence in the litchi plantation. As a result of high-throughput 16S rRNA and ITS rDNA gene illumine sequencing, higher bacterial and fungal community diversity indexes were found in organic mulching soils, the relative abundance of norank f norank o Vicinamibacterales, norank f Vicinamibacteraceae, norank f Xanthobacteraceae, Unclassified c sordariomycetes, Aspergillus and Thermomyces were significant more than that in control soils. Isolation and analysis of antagonistic microorganism showed that 29 antagonistic bacteria strains and 37 antagonistic fungi strains were unique for mulching soils.Conclusions: Thus, we believe that organic mulching has a positive regulatory effect on the litchi downy blight and the soil microbial communities, and so, is more suitable for litchi plantation.


Sign in / Sign up

Export Citation Format

Share Document