scholarly journals Qualitative aspects of Rastall gravity with barotropic fluid

Author(s):  
Ashutosh Singh ◽  
Rakesh Raushan ◽  
R. Chaubey

We investigate the dynamical evolution of homogeneous and isotropic flat-FRW universe filled with a barotropic fluid satisfying linear equation of state in Rastall gravity. Using dynamical system approach, we find the fixed points of the system and study their stability. We further explore the thermodynamic aspects at the apparent horizon by investigating the validity of generalized second law of thermodynamics with equilibrium description.


2017 ◽  
Vol 32 (33) ◽  
pp. 1750182 ◽  
Author(s):  
Ali İhsan Keskin ◽  
Irfan Acikgoz

In this study, the validity of the generalized second law of thermodynamics (GSLT) has been investigated in F(R, G) gravity. We consider that the boundary of the universe is surrounded by an apparent horizon in the spatially flat Friedmann–Robertson–Walker (FRW) universe, and we take into account the Hawking temperature on the horizons. The unified solutions of the field equations corresponding to gravity theory have been applied to the validity of the GSLT frame, and in this way, both the solutions have been verified and all the expansion history of the universe has been shown in a unified picture.



2019 ◽  
Vol 34 (07n08) ◽  
pp. 1950055 ◽  
Author(s):  
Abdul Jawad ◽  
Shamaila Rani ◽  
Nadeem Azhar

Among various dark energy models, Tsallis holographic dark energy model shows the dynamical enthusiasm to describe the transition phase of the universe. In this paper, we consider Tsallis holographic dark energy with event and apparent horizon as an infrared cutoff in the framework of dynamical Chern–Simon modified gravity and non-flat FRW universe. We explore Hubble, equation of state and deceleration parameters and found that Hubble parameter lies in the range [Formula: see text] and [Formula: see text] for event and apparent horizon trajectories, respectively. It is mentioned here that the equation of state parameter lies within the range [Formula: see text] (event) and [Formula: see text] (apparent). Also, deceleration parameter for both cases show accelerated and decelerated phase of universe as well as cosmological constant. Moreover, we also checked the stability of our model through square speed of sound, which shows the positive behavior (exhibits the stability of the model). Finally, we observe that the generalized second law of thermodynamics remains valid in both cases of horizon.



2014 ◽  
Vol 23 (08) ◽  
pp. 1450071 ◽  
Author(s):  
Ramón Herrera ◽  
Nelson Videla

In this paper, we examine the validity of the generalized second law (GSL) of gravitational thermodynamics in the context of interacting f(R) gravity. We take into account that the boundary of the universe to be confined by the dynamical apparent horizon in a flat FRW universe. We study the effective equation of state, deceleration parameter and GSL in this interaction-framework. We find that the evolution of the total entropy increases through the interaction term. As an example, we consider a f(R) gravity with a power-law dependence on the curvature R. Here, we find exact solutions for a model in which the interaction term is related to the total energy density of matter.



2011 ◽  
Vol 89 (9) ◽  
pp. 915-919 ◽  
Author(s):  
H. Farajollahi ◽  
A. Salehi ◽  
F. Tayebi

In this paper, we investigate the validity of the generalized second law of thermodynamics in flat Friedmann–Lemaître–Robertson–Walker chameleon cosmology where the boundary of the universe is assumed to be enclosed by the dynamical apparent horizon. It has been shown that, in a bouncing scenario for the universe with phantom crossing, the total entropy decreases with time in the contracting epoch, whereas, the dynamics of the internal and horizon entropies depend on the behaviour of both the equation of state and the Hubble parameters.



2021 ◽  
Vol 36 (10) ◽  
pp. 2150069
Author(s):  
Abdul Jawad ◽  
Sidra Saleem ◽  
Saba Qummer

We examine thermodynamically an extra driving term for the flat universe by applying Sharma Mittal entropy to Padmanabhan’s holographic equipartition law. Deviations from the Bekenstein–Hawking entropy by using this law, we generate an extra driving in the acceleration equation. By using the constant and parametrized equation of state parameter, we investigate the different cosmological parameters like deceleration parameter, squared speed of sound, Om-diagnostic and statefinder parameter through graphical approach. We observe compatible results with current observational data in both models. Generalized second law of thermodynamics also remains valid in both cases.



2019 ◽  
Vol 35 (04) ◽  
pp. 1950360 ◽  
Author(s):  
A. S. Sefiedgar ◽  
M. Mirzazadeh

Thermodynamics of the evolving Lorentzian wormhole at the apparent horizon is investigated in [Formula: see text] gravity. Redefining the energy density and the pressure, the continuity equation is satisfied and the field equations in [Formula: see text] gravity reduce to the ones in general relativity. However, the energy–momentum tensor includes all the corrections from [Formula: see text] gravity. Therefore, one can apply the standard entropy-area relation within [Formula: see text] gravity. It is shown that there may be an equivalency between the field equations and the first law of thermodynamics. It seems that an equilibrium thermodynamics may be held on the apparent horizon. The validity of the generalized second law of thermodynamics (GSL) is also investigated in the wormholes.



2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Abdul Jawad ◽  
Shamaila Rani ◽  
Salman Rafique

We consider the particle creation scenario in the dynamical Chern-Simons modified gravity in the presence of perfect fluid equation of state p=(γ-1)ρ. By assuming various modified entropies (Bekenstein entropy logarithmic entropy, power law correction, and Renyi entropy), we investigate the first law of thermodynamics and generalized second law of thermodynamics on the apparent horizon. In the presence of particle creation rate, we discuss the generalized second law of thermodynamics and thermal equilibrium condition. It is found that thermodynamics laws and equilibrium condition remain valid under certain conditions of parameters.



2010 ◽  
Vol 19 (07) ◽  
pp. 1205-1215 ◽  
Author(s):  
M. R. SETARE ◽  
A. SHEYKHI

We examine the validity of the generalized second law of thermodynamics in a non-flat universe in the presence of viscous dark energy. First we assume that the universe is filled only with viscous dark energy. Then, we extend our study to the case where there is an interaction between viscous dark energy and pressureless dark matter. We examine the time evolution of the total entropy, including the entropy associated with the apparent horizon and the entropy of the viscous dark energy inside the apparent horizon. Our study shows that the generalized second law of thermodynamics is always protected in a universe filled with interacting viscous dark energy and dark matter in a region enclosed by the apparent horizon. Finally, we show that the the generalized second law of thermodynamics is fulfilled for a universe filled with interacting viscous dark energy and dark matter by taking into account the Casimir effect.



2013 ◽  
Vol 28 (17) ◽  
pp. 1350072 ◽  
Author(s):  
M. SHARIF ◽  
RABIA SALEEM

This paper is devoted to check the validity of laws of thermodynamics for Kaluza–Klein universe in the state of thermal equilibrium, composed of dark matter and dark energy. The generalized holographic dark energy and generalized Ricci dark energy models are considered here. It is proved that the first and generalized second law of thermodynamics are valid on the apparent horizon for both of these models. Further, we take a horizon of radius L with modified holographic or Ricci dark energy. We conclude that these models do not obey the first and generalized second law of thermodynamics on the horizon of fixed radius L for a specific range of model parameters.



Sign in / Sign up

Export Citation Format

Share Document