ALBERTA BITUMEN: I. THE COMPOSITION OF BLOWN ALBERTA BITUMEN

1934 ◽  
Vol 10 (4) ◽  
pp. 435-451 ◽  
Author(s):  
Morris Katz

The relation between the physical consistency and chemical composition of a series of blown asphalts from Alberta bitumen has been studied. The amounts of asphaltous acids and anhydrides decrease on blowing, with rise in fusing point of the bitumen. The amounts of oily constituents and resins also decrease but the asphaltene content increases. The molecular weights of the resins increase from 733 to 1012 during blowing. The asphaltenes also show a pronounced increase in molecular weight from 2219 to 4690 Only traces of oxygen are found in the products blown for 6 to 8. 5 hr. at 270 °C; the amount however increases in the later stages of blowing to a maximum of 1.88%. The oily constituents do not contain oxygen, which is distributed mainly in the resin fractions, with smaller amounts occurring in the asphaltene fractions. The sulphur and nitrogen in the bitumen are distributed principally among the resins and asphaltenes. The essential process in blowing bitumen with air is one of condensation by removal of some hydrogen to form water, followed by polymerization, assisted by the sulphur in the bitumen, to products of higher molecular weight. Products similar in composition and physical properties to commercial grades of mineral rubber have been prepared from Alberta bitumen by blowing.

1941 ◽  
Vol 14 (3) ◽  
pp. 580-589 ◽  
Author(s):  
G. Gee ◽  
L. R. G. Treloar

Abstract As high elasticity is a property possessed only by substances of high molecular weight, it is of interest to enquire into the relation between the elastic properties of a highly elastic material such as rubber and its molecular weight. An investigation on these lines has been made possible through the work of Bloomfield and Farmer, who have succeeded in separating natural rubber into fractions having different average molecular weights. The more important physical properties of these fractions have been examined with the object of determining which of the properties are dependent on molecular weight and which are not. Fairly extensive observations were made on the fractions from latex rubber referred to as Nos. 2, 3 and 4 by Bloomfield and Farmer, and some less extensive observations were carried out on the less oxygenated portion of fraction No. 1 obtained from crepe rubber (called hereafter 1b) . Before considering these experimental results, and their relation to the molecular weights of the fractions, it will be necessary to refer briefly to the methods used for the molecular-weight determinations, and to discuss the significance of the figures obtained.


1976 ◽  
Vol 49 (2) ◽  
pp. 303-319 ◽  
Author(s):  
M. Morton ◽  
L. J. Fetters ◽  
J. Inomata ◽  
D. C. Rubio ◽  
R. N. Young

Abstract The results of this study are the first to show that high-1,4 linear α,ω-dihydroxypolydienes can be synthesized with (a) predictable molecular weights, (b) narrow molecular weight distributions, and (c) high functionalities. Using the functionalized polyisoprenes prepared in this work, a series of networks was prepared with a purified triisocyanate as the chain linking agent. The soluble fraction in these networks ranged from 4.6 to 1.6 per cent. The characteristics and physical properties of these networks will be the subject of a forthcoming publication.


1942 ◽  
Vol 15 (3) ◽  
pp. 446-451
Author(s):  
G. Gee

Abstract The molecular weight data reported in Part II depend on the assumption that the values obtained by extrapolating osmotic pressure measurements to infinite dilution represent true molecular weights. This point of view has been strongly criticized, particularly by Pummerer and his coworkers, according to whom rubber normally exists in solution in the form of micelles comprising more or less well-defined aggregates containing a considerable number of chemical molecules. The- osmotic “molecular weight” is then regarded as the weight of an average micelle. If they exist, these micelles may be important in determining both the chemical and physical behavior of rubber, for we should clearly expect the bonds by which the chemical molecules are bound into micelles to be weaker than those within the molecules. It may be noted that it has been shown elsewhere that the physical properties of a series of rubber fractions are closely related to their osmotic and viscosity molecular weights. Since, according to the micellar theory, these fractions can differ only in micelle size, their mechanical behavior must, from this viewpoint, be determined by the size of the micelles, which must therefore remain intact during mechanical deformation of the rubber. It is the object of the present paper to examine in more detail the basis of the micellar theory, and especially to offer an interpretation of the results of the East method, on which Pummerer's arguments are mainly based.


1983 ◽  
Vol 23 (04) ◽  
pp. 683-694 ◽  
Author(s):  
Curtis H. Whitson

Whitson, Curtis H., SPE, U. of Trondheim Abstract Methods are developed for characterizing the molar distribution (mole fraction/molecular weight relation) and physical properties of petroleum fractions such as heptanes-plus (C7 +). These methods should enhance equation-of-state (EOS) predictions when experimental data are lacking. predictions when experimental data are lacking. The three-parameter gamma probability function is used to characterize the molar distribution, as well as to fit experimental weight and molar distributions and to generate synthetic distributions of heptanes-plus fractions. Equations are provided for calculating physical properties such as critical pressure and temperature properties such as critical pressure and temperature of single-carbon-number (SCN) groups. A simple three-parameter equation is also presented for calculating the Watson characterization factor from molecular weight and specific gravity. Finally, a regrouping scheme is developed to reduce extended analyses to only a few multiple-carbon-number (MCN) groups. Two sets of mixing rules are considered, giving essentially the same results when used with the proposed regrouping procedure. Introduction During the development of the application of EOS's to naturally occurring hydrocarbon mixtures, it has become clear that insufficient description of heavier hydrocarbons (e.g., heptanes and heavier) reduces the accuracy of PVT predictions. Volatile oil and gas-condensate volumetric phase behavior is particularly sensitive to composition and properties of the heaviest components. properties of the heaviest components. Until recently there has not been published in technical journals a comprehensive method for characterizing compositional variation, which we call "molar distribution." Several authors have given lucid descriptions of petroleum fraction characterization, though they deal mainly with physical property estimation. Usually, only physical property estimation. Usually, only a single heptanes-plus (C7 + ) fraction lumps together thousands of compounds with a carbon number higher than six. Molecular weight and specific gravity (or density) of the C7 + fraction may be the only measured data available. Preferably, a complete true-boiling-point (TBP) analysis should be performed on fluids to be matched by an EOS. Distillation experiments yield boiling points, specific gravities, and molecular weights, from which molar distribution is found directly. Special analyses of TBP data can also provide estimates of the paraffin/napthene/ aromatic (PNA) content of SCN groups, which are useful in some property correlations. Unfortunately, such high-quality data are seldom available for fluids being matched or predicted by an EOS. If data other than lumped C7+ properties are available, they might include a partial component analysis (weight distribution) from chromatographic measurements. In this case. only weight fractions of SCN groups are reported; normal boiling points, specific gravities, and molecular weights (needed to convert to a molar basis) simply are not available. Compositional simulation based on an EOS involves two major problems:how to "split" a C7 + fraction into SCN groups with mole fractions. molecular weights, and specific gravities that match measured C7+ properties, andif a partial extended analysis (e.g., C 11 + ) is available, how to extend it to higher carbon numbers. The first step in addressing these problems is to find a versatile, easy-to-use probability function for describing molar distribution. The distribution function should allow consistent matching and reasonable extension of partial analyses. Also, it should not contain too many unknown or difficult-to-determine parameters. This paper presents such a probabilistic model and describes its application to several reservoir fluids under "Molar Distribution."The second step in characterizing plus fractions involves estimating SCN group specific gravities, which, together with estimated molecular weights (from the probabilistic model), could be used to estimate critical properties required by EOS's. We address this problem and suggest a simple method for specific gravity estimation under "Physical Properties Estimation." SPEJ p. 683


Author(s):  
Vladimir N. Manzhai ◽  
Georgy V. Nesyn

Drag reducing additives (DRA) are widely used to increase the pipeline capacity in oil and refined products transit. Introducing DRA at a rate of 1–5 ppm results in considerable lowering of pumping energy. To predict the capability of concerned polymer as a DRA we tried to give an effectiveness theoretical justification in terms of its chemical composition. It was shown that the most effective oil-soluble polymers relate to higher poly(1-alkenes) of superhigh molecular weight (M > 106). Additionally, the nature of the solvent is of importance. 1-Hexene polymerization in the presence of Zigler–Natta catalysts gives a super high molecular weight polymer which is the most effective drag reducer among the higher poly(1-alkenes). But if environment provide some limitation in poly(1-hexene) solubility, such as temperature lowering, or asphaltene content increasing the (co)polymers of 1-octene and 1-decene become the best. Для интенсификации перекачки нефти и нефтепродуктов по магистральным трубопроводам в настоящее время широко используют противотурбулентные присадки, при введении которых в турбулентный поток в предельно малой концентрации (C = 1–5 г/м3) наблюдается уменьшение энергетических затрат на транспортировку углеводородной жидкости. С целью прогнозирования перспективы промышленного использования присадки той или иной химической природы в настоящей работе представлено теоретическое обоснование и экспериментальное подтверждение эффективности различных полимеров. Установлено, что из всех нефтерастворимых полимеров наилучшими противотурбулентными свойствами обладают высшие поли-α-олефины со сверхвысокой молекулярной массой (Мr > 1·106). Также выявлено влияние компонентного состава и термодинамического качества растворителя на эффективность присадок, причем эти факторы следует рассматривать в совокупности. Например, цепь полимера, обогащенная гексеном, при прочих равных условиях синтеза имеет большую молекулярную массу, и такой полимер в хорошем растворителе снижает сопротивление лучше своих аналогов. Тем не менее, если превалируют факторы, ограничивающие растворимость полигексена (низкая температура, обилие асфальтенов в нефти), предпочтительными оказываются полимеры и сополимеры октена и децена, имеющие более низкую температуру стеклования.


e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Yingzhi Guo ◽  
Changjiang Yu ◽  
Zhongwei Gu

Abstract By anionic ring opening polymerization initiated by cyclodextrin oxyanions generated from NaH and β-cyclodextrin(β-CD), novel biodegradable β- CD cored star-shaped poly(ε-caprolactone)s (s-PCLs) were synthesized and then characterized by means of FTIR, GPC, 1H-NMR. The effects of different feed molar ratios of NaH and β-CD on arm number and on the molecular weight of s-PCLs, and the relationship between the polymerization time and monomer conversion were investigated. Moreover, the physical properties of linear PCL (l-PCL) and s- PCLs with similar molecular weights but different arm number were studied and compared by DSC, SEM and intrinsic viscosity measurement, respectively. It was found that the feed molar ratio of NaH and β-CD is an important factor which influences both the molecular weight and arm number. The melting points and intrinsic viscosities of s-PCLs with similar molecular weights were lower than that of l-PCL, and were found to decrease with increasing arm number. Both SEM and AFM showed that the surface morphology of s-PCL films was different from that of l-PCL. These results indicated that s-PCL with different arms and physical properties could be synthesized using just a β-CD core by adjusting the feed molar ratio of NaH and β-CD


1946 ◽  
Vol 19 (3) ◽  
pp. 552-598 ◽  
Author(s):  
Paul J. Flory

Abstract The investigation was undertaken in an attempt to establish the fundamental connections between the physical properties of a typical vulcanized rubberlike polymer and its chemical structure. The structural variables to be considered are the molecular weight of the “primary molecules” entering the vulcanizate, their molecular-weight distribution, and the concentration (or frequency) of cross-linkages introduced during vulcanization. The molecular weights of Butyl rubbers were determined by previously established procedures ; the effects of molecular-weight heterogeneity were suppressed by careful fractionation from very dilute solution. An indirect method, based on the theory of gelation and on the observation of critical molecular weight for incipient gelation (partial insolubility) in “vulcanisates” formed when the cross-linking capacity is fixed, was employed to determine the frequency of occurrence of cross-linked units—a quantity not hitherto evaluated in a vulcanized rubber. In representative pure-gum vulcanizates of Butyl the molecular weight per cross-linked unit ranges from about 35,000 to 20,000, depending (inversely) on the diolefin content of the raw rubber. Micro compounding and testing procedures have been devised for evaluating the necessarily small samples ob- tained in fractionation. Complete evaluation of tensile strength, stress-strain characteristics, swelling in solvents, and creep rate can be obtained with as little as 3 grams of rubber. Results are no less reproducible than those obtained with conventional procedures requiring 50 grams or more. A number of rela- tionships between vulcanizate structure and physical properties have been established. The feasibility of a rational approach to the interpretation of properties of rubber vulcanizates in terms of molecular structure has been demonstrated.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2468
Author(s):  
Oliver Strbak ◽  
Iryna Antal ◽  
Iryna Khmara ◽  
Martina Koneracka ◽  
Martina Kubovcikova ◽  
...  

Dextran-coated magnetic nanoparticles are promising biocompatible agents in various biomedical applications, including hyperthermia and magnetic resonance imaging (MRI). However, the influence of dextran molecular weight on the physical properties of dextran-coated magnetic nanoparticles has not been described sufficiently. We synthesise magnetite nanoparticles with a dextran coating using a co-precipitation method and study their physical properties as a function of dextran molecular weight. Several different methods are used to determine the size distribution of the particles, including microscopy, dynamic light scattering, differential centrifugal sedimentation and magnetic measurements. The size of the dextran-coated particles increases with increasing dextran molecular weight. We find that the molecular weight of dextran has a significant effect on the particle size, efficiency, magnetic properties and specific absorption rate. Magnetic hyperthermia measurements show that heating is faster for dextran-coated particles with higher molecular weight. The different molecular weights of the coating also significantly affected its MRI relaxation properties, especially the transversal relaxivity r2. Linear regression analysis reveals a statistically significant dependence of r2 on the differential centrifugal sedimentation diameter. This allows the targeted preparation of dextran-coated magnetic nanoparticles with the desired MRI properties. These results will aid the development of functionalised magnetic nanoparticles for hyperthermia and MRI applications.


1876 ◽  
Vol 24 (164-170) ◽  
pp. 298-308

The molecular weight of bromine is, as is well known, nearly equal tc the arithmetic mean of the molecular weights of chlorine and iodine hence the molecular weights of bromine and of iodine monochloride (I Cl are nearly identical. These substances closely resemble each other ii physical properties. Both are dark-red liquids about three times heavie: than water. Bromine boils at about 59°-5, and solidifies at —240,5 iodine monochloride melts at +24°·5, and boils at 101°: the intern between the boiling- and melting-points of the two compounds is approximately equal. It appeared to me of interest to determine (1) if the specific volume of these liquids exhibit a relation similar to that which is shown by their molecular weights, and (2) if the relation in their specific volumes i preserved in analogous combinations of the two bodies. I have accordingly determined the specific gravities, boiling-points, and rates of expansion of bromine and iodine monochloride, and of the compound which these substances form by their union with ethene, C 2 H 4 . Th observations will also serve to determine if bromine and iodine mono chloride preserve, when in combination, the volumes which they posses in the free state.


2000 ◽  
Vol 42 (1) ◽  
pp. 26-40 ◽  
Author(s):  
R. S. Anderssen ◽  
M. Westcott

AbstractMixing rules model how the physical properties of a polymer, such as its relaxation modulus G(t), depend on the distribution w(m) of its molecular weights m. They are of practical importance because, among other things, they allow estimates of the molecular weight distribution (MWD) w(m) of a polymer to be determined from measurements of its physical properties including the relaxation modulus. The two most common mixing rules are “single” and “double” reptation. Various derivations for these rules have been published. In this paper, a conditional probability formulation is given which identifies that the fundamental essence of “double” reptation is the discrete binary nature of the “entanglements”, which are assumed to occur in the corresponding topological model of the underlying polymer dynamics. In addition, various methods for determining the MWD are reviewed, and the computation of linear functionals of the MWD motivated and briefly examined.


Sign in / Sign up

Export Citation Format

Share Document