Isotopic and trace element constraints on the genesis of a boninitic sequence in the Thetford Mines ophiolitic complex, Quebec, Canada

1997 ◽  
Vol 34 (9) ◽  
pp. 1258-1271 ◽  
Author(s):  
Valérie Olive ◽  
Réjean Hébert ◽  
Michel Loubet

The Mont Ham Massif (part of the Thetford Mines ophiolite, south Quebec) represents a magmatic sequence made up of tholeiitic and boninitic derived products. A geochemical study confirms the multicomponent mixing models that have been classically advanced for the source of boninites, with slab-derived components added to the main refractory harzburgitic peridotite. An isochron diagram of the boninitic rocks is interpreted as a mixing trend between two components: (i) a light rare earth element (LREE) enriched component (A), interpreted as slab-derived fluid–melts equilibrated with sedimentary materials (εNd = −3, 147Sm/144Nd = 0.140), and (ii) a LREE-depleted component (B) (0.21 < 147Sm/144Nd < 0.23), interpreted as slab-derived fluid–melt equilibrated with recycled Iapetus oceanic crust and equated to the Nd-isotope characteristics of the Iapetus mantle (εNd = 9). A multicomponent source is also necessary to explain the Nd-isotope and trace element composition of the tholeiites, which are explained by the melting of a more fertile, lherzolitic mantle and (or) mid-ocean ridge basalt source (component C), characterized by a large-ion lithophile element depleted pattern and an Iapetus mantle Nd isotopic composition (εNd = 9), mixed in adequate proportions with the two previously infered slab-derived components (A and B). The genesis of the boninites of Mont Ham is not significantly different from those of boninites located in the Pacific. An intraoceanic subduction zone appears to be an appropriate geodynamic environment for the Mont Ham ophiolitic sequence.

Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 805 ◽  
Author(s):  
Aleksandr D. Savelev ◽  
Sergey V. Malyshev ◽  
Valery M. Savatenkov ◽  
Daniil D. Ignatov ◽  
Anastasia D. Kuzkina

We report major and trace element concentrations, along with Nd isotope compositions, for Late Mesoproterozoic to Early Neoproterozoic dolerite sills from the Sette-Daban ridge (southern Verkhoyansk, south-east Siberia). Based on their major element composition, all rocks correspond to low-Ti (<3 wt% TiO2) moderately alkaline basalts. The intrusions can be subdivided into two groups based on their trace element compositions. One group includes sills mainly distributed in the southern part of the study area (Yudoma group), with mid-ocean ridge basalt (MORB) trace element patterns enriched in aqueous fluid mobile incompatible (FMI) elements (Sr, Pb, Ba, U). The second group includes sills mostly distributed in the northern part of the study area, enriched in immobile incompatible (II) elements (Th, Nb, light rare earth elements (LREE)) and to a lesser extent, in aqueous fluid mobile elements. The Nd isotope signatures of the dolerites characterize a depleted mantle source, with a small enrichment from recycled continental crust. The geochemical characteristics of these igneous rocks are analogous to low-Ti basalts of large intraplate provinces (e.g., the Karoo and Siberian Traps). We propose that they formed by rifting-induced melting of the heterogeneous metasomatized shallow spinel-bearing mantle zone. We suggest that two different melting sources were involved in the generation of the two geochemically distinct sill groups, including the addition of two different subduction components. The southern sills were formed by melting of depleted lithospheric mantle enriched with FMI elements, corresponding to subduction-induced metasomatic alteration by fluids at shallow depths. The northern dolerites were formed by melting of depleted lithospheric mantle enriched with II elements, associated with the melting of subducted sediments at deeper depths.


2021 ◽  
Author(s):  
Fernanda Torres Garcia ◽  
Mauricio Calderón ◽  
Leonardo Fadel Cury ◽  
Thomas Theye ◽  
Joachim Opitz ◽  
...  

&lt;p&gt;During the Upper Jurassic-Lower Cretaceous times the western margin of Gondwana in southern Patagonia experienced extreme lithospheric extension and generation of rift and marginal back-arc basins. The ophiolitic complexes of the Rocas Verdes basin comprises incomplete ophiolite pseudostratigraphy lacking ultramafic rocks. The Tortuga Ophiolitic Complex, the southernmost seafloor remnant of the Rocas Verdes basin, record the most advanced evolutionary stage of the back-arc basin evolution in a mid-ocean ridge-type setting. The base of the Tortuga Complex consists of massive and layered gabbros, most of which are two pyroxene and olivine gabbros, leucogabbros, and clinopyroxene troctolites intruded by dikes of basalt and diabase with chilled margins. We present new major and trace element composition of clinopyroxene from the gabbros and sheeted dikes complexes to assess the geochemical affinity of parental basaltic magmas. Clinopyroxene in gabbros is mostly augite and have Al contents of 0.06-0.14 a.p.f.u. and Mg# of 80-92. Clinopyroxene in dolerites in the sheeted dike unit (augite and diopside) have Al content of 0.11-0.12 a.p.f.u. and Mg# of 85-92. Some immobile trace elements (e.g. Zr, Ti, Y) are sensitive to the degree of partial melting and mantle source composition, and can be used as a proxy for distinguishing tectonic environments. The Ti+Cr vs. Ca diagram, coupled with moderate-high TiO&lt;sub&gt;2&lt;/sub&gt; content of clinopyroxene (0.4-1.4 wt.%) suggests their generation in mid-oceanic ridge-type environment (cf. Beccaluva et al., 1989).&amp;#160; The high Ti/Zr ratios (of ~4-11) coupled with low Zr contents (~0.2-1.1) are expected for higher degrees of partial melting or for melting of more depleted mantle sources. Conversely, low Zr/Y ratios (0.05-0.13) plot between the range of arc basalts. Chondrite-normalized REE patterns in clinopyroxene display a strong depletion of LREE compared to HREE and have an almost flat pattern in the MREE to HREE with a positive Eu (Eu*= 0.9-1.1) anomaly, indicating that clinopyroxene crystallized from a strongly depleted mid-ocean-ridge-type basalt, formed by extensive fractional melting of the mantle source and/or fractional crystallization and accumulation of anhydrous phases. The general trend of the incompatible trace elements patterns exhibit depletion in LILEs, minor HFSEs depletion, positive anomaly of Rb and negative anomalies in Ba, Zr, Ti and Nb, consistent with their generation from a refractory mantle source barely influenced by subduction components derived from the oceanic slab. This agrees with basalt generation in a back-arc basin located far away from the convergent margin. This study was supported by the Fondecyt grant 1161818 and the Anillo Project ACT-105.&lt;/p&gt;


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
A. Y. Yang ◽  
C. H. Langmuir ◽  
Y. Cai ◽  
P. Michael ◽  
S. L. Goldstein ◽  
...  

AbstractThe plate tectonic cycle produces chemically distinct mid-ocean ridge basalts and arc volcanics, with the latter enriched in elements such as Ba, Rb, Th, Sr and Pb and depleted in Nb owing to the water-rich flux from the subducted slab. Basalts from back-arc basins, with intermediate compositions, show that such a slab flux can be transported behind the volcanic front of the arc and incorporated into mantle flow. Hence it is puzzling why melts of subduction-modified mantle have rarely been recognized in mid-ocean ridge basalts. Here we report the first mid-ocean ridge basalt samples with distinct arc signatures, akin to back-arc basin basalts, from the Arctic Gakkel Ridge. A new high precision dataset for 576 Gakkel samples suggests a pervasive subduction influence in this region. This influence can also be identified in Atlantic and Indian mid-ocean ridge basalts but is nearly absent in Pacific mid-ocean ridge basalts. Such a hemispheric-scale upper mantle heterogeneity reflects subduction modification of the asthenospheric mantle which is incorporated into mantle flow, and whose geographical distribution is controlled dominantly by a “subduction shield” that has surrounded the Pacific Ocean for 180 Myr. Simple modeling suggests that a slab flux equivalent to ~13% of the output at arcs is incorporated into the convecting upper mantle.


2021 ◽  
Author(s):  
Longming Li

Table S1: Zircon SIMS U-Pb data and d18O values for the meta-felsic rocks from Shitun area, Cathaysia block, South China; Table S2: LA-ICP-MS analysis of trace elements in zircon from the meta-felsic rocks, Shitun area, Cathaysia block, South China; Table S3: Zircon Hf isotope compositions of the meta-felsic rocks from Shitun area, Cathaysia block, South China; Table S4: Major- and trace-element compositions of the serpentinites, meta-ultramafic rocks, and meta-felsic rocks from Shitun area, Cathaysia block, South China; Table S5: Whole-rock Re-Os isotope compositions of the serpentinites from Shitun area, Cathaysia block, South China; and Table S6: Sr-Nd isotope compositions of the meta-ultramafic and meta-felsic rocks from Shitun area, Cathaysia block, South China.


1999 ◽  
Vol 36 (6) ◽  
pp. 1021-1031 ◽  
Author(s):  
Brian Cousens ◽  
Jarda Dostal ◽  
T S Hamilton

Three seamounts close to the south end of the Pratt-Welker Seamount Chain, Gulf of Alaska, have been sampled to test whether or not mantle plume-related volcanism extends south of Bowie Seamount. Lavas recovered from Oshawa, Drifters, and Graham seamounts are weathered, Mn-encrusted pillow lavas and sheet-flow fragments, commonly with glassy rims. The glasses and holocrystalline rocks are tholeiitic basalts, with light rare earth element depleted to flat primitive mantle normalized incompatible element patterns and radiogenic isotope compositions within the ranges of mid-ocean ridge and near-ridge seamount basalts from the Explorer and northern Juan de Fuca ridges. Chemically, the seamount lavas strongly resemble older, "shield-phase" tholeiitic rocks dredged from the flanks of southern Pratt-Welker seamounts, but are distinct from the younger alkaline intraplate lavas that cap Pratt-Welker edifices. The weathered, encrusted basalts were most likely erupted in a near-ridge environment, adjacent to Explorer Ridge, between 11 and 14 Ma. No evidence of plume-related activity is found in this area. Compared with northeast Pacific mid-ocean ridge and alkaline intraplate basalts, Graham seamount lavas have anomalously high 206Pb/204Pb, which does not appear to be a function of sea-floor alteration, magma contamination, or mixing between previously identified mantle components. All near-ridge seamounts in the northeast Pacific exhibit isotopic heterogeneity that does not correlate with major or trace element composition, suggesting that the mantle sources of all near-ridge seamounts have been variably depleted by prior, but recent melting events.


1993 ◽  
Vol 30 (6) ◽  
pp. 1123-1140 ◽  
Author(s):  
P. C. Lightfoot ◽  
H. de Souza ◽  
W. Doherty

Major and trace element data are presented for 2.2 Ga Proterozoic diabase sills from across the Nipissing magmatic province of Ontario. In situ differentiation of the magma coupled with assimilation of Huronian Supergroup roof sediments is responsible for the variation in composition between quartz diabase and granophyric diabase seen within many of the differentiated intrusions. Uniform trace element and isotope ratio signatures, such as La/Sm (2.8 – 3.7) and εNdCHUR (−2.7 to −5.9) characterize chilled margins and undifferentiated quartz diabases. These chemical signatures suggest the existence of a single magma source that was parental to intrusions throughout the magmatic province; this magma has higher La/Sm and lower Ti/Y than primitive mantle and is displaced towards the composition of shales. Most chilled diabases and quartz diabases have a similar Mg# (0.64 and 0.60) and Ni content (98 and 127 ppm), and it is argued that the magma differentiated at depth and was emplaced as a uniform low-Mg magma. The Wanapitei intrusion and Kukagami Lake sill are an exception in that although the quartz diabase has La/Sm similar to the Nipissing magma type, which suggests that they came from the same source, the Mg# (0.68–0.71) and Ni content (130–141 ppm) are higher, which may suggest that they are either slightly more primitive examples of the normal Nipissing magma or that cumulus hypersthene has been resorbed. The light rare earth element enriched signature of the Nipissing magmas was perhaps introduced from the continental crust as the magma migrated from the mantle to the surface, but a remarkably constant and large amount (>20%) of crustal contamination would be required. An addition of 1 –3% shale to the source of a transitional mid-ocean ridge basalt type magma can broadly reproduce the compositional features of the Nipissing magma type. The source characteristics were perhaps imparted during subduction accompanying the terminal Kenoran orogeny.


Destructive plate margin magmas may be subdivided into two groups on the basis of their rare earth element (REE) ratios. Most island arc suites have low Ce/Yb, and remarkably restricted isotope ratios of 87 Sr/ 86 Sr = 0.7033, 143 Nd/ 144 Nd = 0.51302, 206 Pb/ 204 Pb = 18.76 , 207 Pb/ 204 Pb = 15.57, and 208 Pb/ 204 Pb = 38.4. However, they also have Rb/Sr (0.03), Th/U (2.2) and Ce/Yb (8.5) ratios which are significantly less than accepted estimates for the bulk continental crust. The high Ce/Yb suites have higher incompatible element contents, more restricted heavy REE, and much more variable isotope ratios. Such rocks are found in the Aeolian Islands, Grenada, Indonesia and Philippines, and their isotope and trace element features have been attributed both to contributions from subducted sediment, and/or old trace element enriched material in the mantle wedge. It is argued that for isotope and trace element models the slab component can usefully be taken to consist of subducted sediment and altered mid-ocean ridge basalts, since these may contain ca. 80% of the water in the subducted slab, and the distinctive trace element features of arc magmas are generally attributed to the movement of material in hydrous fluids. The isotope data indicate that not more than 15% of the Sr and Th in an average arc magma were derived from subducted material, and that the rest were derived from the mantle wedge. The fluxes of elements which cannot be characterized isotopically are more difficult to constrain, but for most minor and trace elements the slab derived contribution in arc magmas is too small to have a noticeable effect on the residual slab.


Petrology ◽  
2021 ◽  
Vol 29 (1) ◽  
pp. 14-23
Author(s):  
N. Nekrylov ◽  
A. A. Korneeva ◽  
D. P. Savelyev ◽  
T. N. Antsiferova

Abstract We conducted the geochemical modeling of trace element contents for primary melts of olivine-phyric rocks from Kamchatsky Mys. This modeling reveals substantial chemical heterogeneity of their source while the average source composition is close to the enriched DMM (E-DMM). The average estimation of the melting degree is in the range from 9.1 ± 3.8% for the model of modal batch melting to 15.4 ± 5.2% for the model of accumulated fractional melting, which is slightly higher than the estimation for primitive mid-ocean ridge basalt (MORB) glasses (7.4 ± 2.2% and 12.5 ± 3.8% respectively). It is in a good agreement with high melting degrees estimated earlier for other rocks of the Kamchatsky Mys ophiolites. Low pressure of mantle melting caused by the elevated speed of decompression relative to the average MORB could explain elevated melting degrees estimated for Kamhcatsky Mys ophiolites as well as their characteristic Sr-anomalies and sulfide saturation on the earliest stages of magmatic evolution.


2021 ◽  
Author(s):  
Longming Li

Table S1: Zircon SIMS U-Pb data and d18O values for the meta-felsic rocks from Shitun area, Cathaysia block, South China; Table S2: LA-ICP-MS analysis of trace elements in zircon from the meta-felsic rocks, Shitun area, Cathaysia block, South China; Table S3: Zircon Hf isotope compositions of the meta-felsic rocks from Shitun area, Cathaysia block, South China; Table S4: Major- and trace-element compositions of the serpentinites, meta-ultramafic rocks, and meta-felsic rocks from Shitun area, Cathaysia block, South China; Table S5: Whole-rock Re-Os isotope compositions of the serpentinites from Shitun area, Cathaysia block, South China; and Table S6: Sr-Nd isotope compositions of the meta-ultramafic and meta-felsic rocks from Shitun area, Cathaysia block, South China.


2020 ◽  
Vol 61 (5) ◽  
Author(s):  
Navot Morag ◽  
Tzahi Golan ◽  
Yaron Katzir ◽  
Matthew A Coble ◽  
Kouki Kitajima ◽  
...  

Abstract U–Pb ages, trace element content and oxygen isotope ratios of single zircons from five plagiogranite intrusions of the Troodos ophiolite were measured to determine their crystallization age and assess the importance of fractional crystallization versus crustal anatexis in their petrogenesis. The results indicate that oceanic magmatism in Troodos took place at 94·3 ± 0·5 Ma, about 3 Myr earlier than previously recognized. Later hydrothermal alteration has affected most of the Troodos plagiogranitic rocks, resulting in growth of new zircon and/or partial alteration of zircon domains, causing slightly younger apparent crystallization ages. The new age inferred for seafloor spreading and ocean crust accretion in Troodos nearly overlaps that of the Semail ophiolite in Oman (95–96 Ma), strengthening previous indications for simultaneous evolution of both ophiolites in similar tectonic settings. Average δ18O(Zrn) values in the Troodos plagiogranites range between 4·2 and 4·8 ‰. The lower values in this range are lower than those expected in equilibrium with mantle-derived melt (5·3 ± 0·6 ‰), indicating variable contribution from hydrothermally altered, deep-seated oceanic crust in most of the Troodos plagiogranite intrusions. The inferred substantial involvement of crustal component is consistent with the existence of a shallow axial magma chamber, typical of fast-spreading mid-ocean ridge settings, within the Troodos slow-spreading ridge environment. This apparent contradiction may be reconciled by episodically intense magmatism within an otherwise slow, magmatically deprived spreading axis.


Sign in / Sign up

Export Citation Format

Share Document