Structural evolution of basement gneisses and Hadrynian cover, Bulldog Creek area, Rocky Mountains, British Columbia

1988 ◽  
Vol 25 (10) ◽  
pp. 1687-1702 ◽  
Author(s):  
Michael R. McDonough ◽  
Philip S. Simony

Two gneiss bodies are contained in thrust sheets on the west edge of the Rocky Mountain Main Ranges near Valemount, British Columbia. The Bulldog Gneiss comprises Aphebian or older paragneiss and amphibolitic gneiss intruded by Aphebian orthogneiss sheets. The Yellowjacket Gneiss is granodioritic orthogneiss of unknown age. Both gneiss bodies are basement highs with thin Hadrynian metasediment cover sequences. The cover sequences are assigned to the lower Miette Group and are correlated with Horsethief Creek Group.Internal shortening of gneiss thrust sheets is expressed by recumbent folding and stacking of thin thrust sheets of gneiss and cover. The Bulldog Gneiss and its cover were carried on the postmetamorphic Purcell Thrust. The Yellowjacket Gneiss and its cover were carried on the pre- to synmetamorphic Bear Foot Thrust. Northeast and northwest displacement is documented on the moderately southwest-dipping Bear Foot Thrust, and a dextral oblique-slip – thrust model is proposed to explain the duality of thrust and dextral strike-slip kinematic indicators in mylonite from the fault. An estimate of shortening in the fore-land suggests that basement thrust sheets were translated more than 200 km to the northeast.Correlation of gneisses and cover with the westerly adjacent Malton Gneiss and its cover precludes major dextral strike-slip motion on the Southern Rocky Mountain Trench (SRMT) during and after thrusting. The SRMT was the locus of post-thrusting and postmetamorphic, Eocene(?), brittle, west-side-down, normal faulting.

1992 ◽  
Vol 29 (6) ◽  
pp. 1305-1319 ◽  
Author(s):  
Moira T. Smith ◽  
George E. Gehrels

The Lardeau Group is a heterogeneous assemblage of lower Paleozoic eugeoclinal strata present in the Kootenay Arc in southeastern British Columbia. It is in fault contact with lower Paleozoic miogeoclinal strata for all or some of its length along a structure termed the Lardeau shear zone. The Lardeau Group was deformed prior to mid-Mississippian time, as manifested by layer-parallel faults, folds, and evidence for early greenschist-facies metamorphism. Regional constraints indicate probable Devono-Mississippian timing of orogeny, and possible juxtaposition of the Lardeau Group over miogeoclinal strata along the Lardeau shear zone at this time. Further ductile deformation during the Middle Jurassic Columbian orogeny produced large folds with subhorizontal axes, northwest-striking foliation and faults, and orogen-parallel stretching lineations. This deformation was apparently not everywhere synchronous, and may have continued through Late Jurassic time northeast of Trout Lake. This was followed by Cretaceous(?) dextral strike-slip and normal movement on the Lardeau shear zone and other parallel faults. While apparently the locus of several episodes of faulting, the Lardeau shear zone does not record the accretion of far-travelled tectonic fragments, as sedimentological evidence ties the Lardeau Group and other outboard units to the craton.


2001 ◽  
Vol 38 (4) ◽  
pp. 657-678 ◽  
Author(s):  
Carmel Lowe ◽  
Randolph J Enkin ◽  
Lambertus C Struik

New magnetic and paleomagnetic data for central British Columbia support and quantify the hypothesis that the area underwent significant Tertiary-age transtensional deformation. Paleomagnetically determined tilts in Eocene rocks indicate that four fault-bounded pits, which constitute the Endako molybdenum mine, were displaced on a series of normal (probably listric) faults that have separations of less than a kilometre. The interpretation also suggests there can be little vertical offset on the Denak West Fault, which separates the Denak East and Denak West pits. Regional paleomagnetic data indicate a predominance of easterly directed tilts to the east of the Casey Fault, but to the west a large variation in the orientation and magnitude of tilts is observed. Results at one site proximal to the Casey Fault indicate a component of dip-slip displacement on this dominantly dextral strike-slip fault. Mapped northeast- and northwest-trending faults commonly correspond to linear zones of steep magnetic gradient and near-surface magnetic sources. Several additional northwest- and northeast-trending lineaments are imaged in the magnetic data where no faults are mapped (particularly over massive and lithologically homogeneous phases of the Endako batholith). Euler deconvolution solutions confirm most such lineaments are also associated with shallow magnetic sources. In profile, they have either a fault or dyke character and are interpreted to be unmapped faults, some locally intruded by mafic dykes, which cut the region into a series of fault-bounded blocks.


2002 ◽  
Vol 39 (6) ◽  
pp. 953-970 ◽  
Author(s):  
L F Reid ◽  
P S Simony ◽  
G M Ross

The Cariboo Mountains, British Columbia, contain an intracontinental dextral strike-slip fault system that crosscuts the regional fold structures. This fault system accounts for a minimum of 120 km and a maximum of 200 km of dextral strike-slip displacement. This probably accommodates some of the motion associated with the southern termination of the Northern Rocky Mountain Trench Fault and is part of a step-over zone between the Northern Rocky Mountain Trench Fault and the Fraser River – Straight Creek fault systems. The Isaac Lake Synclinorium is a kilometre-scale Jurassic fold structure that is bounded by the dextral oblique Isaac Lake and Winder strike-slip faults. These faults are part of the regional strike-slip fault system that is found throughout the Cariboo Mountains. Deformation associated with the strike-slip faults is complex and is partitioned into motion along the faults and into the formation of kilometre-scale folds that are found in areas between the faults. The angular relationship between the strike-slip faults and folds conforms to models developed for dextral strike-slip fault systems with drag on high-friction faults. We interpreted these structures to have formed during a continuous deformation event. Timing constraints indicate that faulting started by the Late Cretaceous and may have had a long and protracted history into the Tertiary.


2021 ◽  
Author(s):  
Hardy Medry Dieu-Veill Nkodia ◽  
Timothée Miyouna ◽  
Florent Boudzoumou ◽  
Damien Delvaux

<p>Damage zones around strike-slip faults constitutes important site of earthquake initiation, propagation, rupture or barrier. They also constitute important sites that host and conduct fluids. Most investigations of these strike-slip damage zones focus on plan view geometries and little attention is paid to subsurface or profile geometries associated. Depending on the presence of a shortening or extensional component during deformation, strike-slip faults do not often show straight path in cross-section. Understanding the expression of damage zones in cross-section is therefore important in predicting subsurface strike-slip faults features. The Paleozoic red feldspathic sandstones of the Inkisi Group in the foreland of the West-Congo Belt show beautiful examples of strike-slip faults with damage zones in both the Republic of Congo and the Democratic Republic of Congo (Nkodia et al., 2020). These strike-slip faults are organized in two major faults system developed in a pure strike-slip regime. The oldest system is dominated by NNW–SSE trending sinistral strike-slip faults and minor E–W striking dextral strike-slip faults. The youngest system consists of dominant NE–SW trending dextral strike-slip faults and minor NW–SE trending sinistral strike-slip faults. Field investigation show four arrangement of flowers structures along the strike-slip faults: (i) those associated with wall damage zones; (ii) those associated with linking damage zones; (iii) those associated with tip damage zones; and (iv) “hourglass” flower structures. Further investigation of strike-slip faults in the Schisto-calaire Group of the West-Congo Belt show also similar flower structures arrangement in limestones. In the Inkisi Group, these arrangements are dependent on the fault growth and propagation. Both strike-slip faults system in the Inkisi Group show an evolving pattern, from closely spaced short faults segments, to highly spaced long faults segments with few interactions of pattern. </p><p>Nkodia, H.M.D.V., Miyouna, T., Delvaux, D., Boudzoumou, F., 2020. Flower structures in sandstones of the Paleozoic Inkisi Group (Brazzaville, Republic of Congo): evidence for two major strike-slip fault systems and geodynamic implications. South African Journal of Geology 123(4), 531-550. Doi: 10.25131/sajg.123.0038.</p>


2021 ◽  
Author(s):  
Huang Zhen ◽  
Yang Bo ◽  
Li Guoying ◽  
Ren Jian ◽  
Wang Xiaoling

Abstract Laizhouwan sag in Bohai Bay basin is a fault basin controlled by extensional fault depression and strike slip pull apart, which is an important oil and gas exploration area in Bohai Bay. Exploration practice shows that the prediction of high quality reservoir is the core problem of exploration in this area. Based on the analysis of drilling, seismic data and structural physical simulation in Laizhouwan depression, this paper analyzes the structural deformation under the stress field of strike slip extensional superposition, and points out the dynamic source controlled sand model in the strike slip extensional superposition area. Firstly, The structural response of "pressure relief settlement, pressure boosting uplift" under the mechanism of strike slip extension stress superposition stress is the root cause of block uplift drop alternation transformation. As a result, the southern slope zone of Laizhouwan depression shows the structural pattern of early uplift and late uplift in the East and early uplift and late uplift in the west, forming a "seesaw" structural evolution pattern. Secondly, the unique paleogeomorphology controls the orderly distribution of sedimentary system in time and space. In the Paleocene, the east uplifted, forming a local provenance system. In the denudation area above the slope break developed fracture weathering shell type reservoirs, and the subsidence area under the slope break developed fan delta deposits; In the early Eocene, the relatively flat platform palaeogeomorphology was developed, which created favorable conditions for the development of mixed sedimentary body of lacustrine carbonate and delta; At the end of Eocene, the West was pressurized and uplifted, the East was released and subsided, and the braided river delta sediments of Western provenance were developed. Under the guidance of this recognition, the hidden dynamic provenance was successfully identified in the study area.


1988 ◽  
Vol 25 (11) ◽  
pp. 1725-1739 ◽  
Author(s):  
V. E. Chamberlain ◽  
R. St J. Lambert ◽  
M. J. M. Duke ◽  
J. G. Holland

Rare-earth elements and other trace elements have been determined by activation analysis and X-ray fluorescence for representative samples from each of the four blocks of basement gneisses near Valemount, eastern British Columbia. Patterns in mafic and tonalitic gneisses are generally as expected, but the granite–gneisses have very large negative europium anomalies, up to Eu*/Eu = 18, indicating multistage histories involving plagioclase fractionation. Modelling shows that plagioclase fractionation alone is insufficient to account for these anomalies without intervention of other phases: apatite control is suggested, among other possibilities. The granite–gneisses also contain exceptionally low magnesium (0.1–0.2%), phosphorus (<300 ppm), scandium (<0.07 ppm), and cesium (<0.5 ppm). After partial melting is considered as a possible mode of origin, it is concluded that the granite–gneisses are final, small-scale fractionates from enriched tholeiite magmas. These might be associated with upper Proterozoic rifting processes. Previously published conclusions regarding the protolith of each subset of the gneisses are confirmed; likewise, the earlier conclusion that the gneisses cannot be correlated across the Southern Rocky Mountain Trench is substantiated in detail.


1991 ◽  
Vol 28 (6) ◽  
pp. 947-957 ◽  
Author(s):  
Hubert Gabrielse

Five clearly defined terranes, comprising from northeast to southwest, Ancestral North America, Slide Mountain, Quesnellia, Cache Creek, and Stikinia, are the dominant tectonic elements of north-central British Columbia. Stratigraphic, sedimentological, plutonic, metamorphic, and structural data show that the Slide Mountain Terrane evolved as a subduction, accretion, and island-arc complex during Permian time. Sedimentological data hint at the demise of the Slide Mountain and Cache Creek oceanic environments in the Permian or Early Triassic and Late Triassic, respectively. Subduction led to the development of volcanic–plutonic island arcs on Stikinia, Quesnellia, and locally on the Cache Creek Terrane in Late Triassic to Middle Jurassic time. Marked inter- and intra-terrane contraction in the Middle Jurassic resulted in the south westward thrusting of the Cache Creek Terrane onto Stikinia, the subsequent development of the Bowser Basin on Stikinia, and possible coeval culmination of the emplacement of Quesnellia and the Slide Mountain Terrane onto Ancestral North America. Deformation, metamorphism, and plutonism along the western margin of Ancestral North America closely followed these events. Contraction was succeeded by a dextral strike-slip regime during the mid-Cretaceous accompanied by the intrusion of voluminous potassic, silica-rich granitic rocks in Ancestral North America. The emplacement of Early to mid-Cretaceous plutons postdated the development of broad, open, regional anticlinoria and synclinoria, perhaps during Early Cretaceous time. The plutonic episode coincided approximately with initiation of the Sustut Basin. Dextral strike-slip faulting further disrupted Ancestral North America until post-Eocene time.


1994 ◽  
Vol 162 ◽  
pp. 113-127
Author(s):  
J.M Hull ◽  
J.A Gilotti

The Germania Land deformation zone in North-East Greenland consists of two subparallel, NW-striking strands of mylonites and cataclasites. The quasiplastic mylonites formed under low grade (biotite zone) conditions following high grade Caledonian metamorphism. Displacements on the Germania Land deformation zone and parallel zones at Danmarkshavn were predominantly dextral strike slip. Along with the similar, but sinistral, Storstrømmen shear zone, these zones record a late Caledonian phase of orogen-parallel movement. The Germania Land deformation zone is also the locus of Carboniferous normal faulting and basin development.


Sign in / Sign up

Export Citation Format

Share Document