Geochemistry of two metavolcanic arc suites from the Central Metasedimentary Belt of the Grenville Province, southeastern Ontario, Canada

1991 ◽  
Vol 28 (9) ◽  
pp. 1429-1443 ◽  
Author(s):  
Luc Harnois ◽  
John M. Moore

Samples of two subalkaline metavolcanic suites, the Tudor formation (ca. 1.28 Ga) and the overlying Kashwakamak formation, have been analysed for major elements and 27 trace elements (including rare-earth elements). The Tudor formation is tholeiitic and contains mainly basaltic flows, whereas the Kashwakamak formation is calc-alkaline and contains mainly andesitic rocks with minor felsic rocks. The succession has been regionally metamorphosed to upper greenschist – lower amphibolite facies. Trace-element abundances and ratios indicate that rocks of the Tudor and Kashwakamak formations are island-arc type. Geochemical modelling using rare-earth elements, Zr, Ti, and Y indicates that the Tudor volcanic rocks are not derived from a single parental magma through simple fractional crystallization. Equilibrium partial melting of a heterogeneous Proterozoic upper mantle can explain the trace-element abundances and ratios of Tudor formation volcanic rocks. The intermediate to felsic rocks of the Kashwakamak formation appear to have been derived from a separate partial melting event. The data are consistent with an origin of the arc either on oceanic crust or on thinned continental crust, and with accretion of the arc to a continental margin between the time of extrusion of Tudor volcanic rocks and that of Kashwakamak volcanic rocks.

2020 ◽  
Vol 34 (2) ◽  
pp. 183-194
Author(s):  
Alexandre Chaves ◽  
Luiz Knauer

The hematitic phyllite is a rock that occurs in the São João da Chapada and Sopa-Brumadinho formations of the southern Espinhaço range. Its origin is widely discussed in papers on Espinhaço, but there is no consensus on its protolith due to certain characteristics of the lithotype, such as its chemical composition and textural features. The pattern of rare earth elements strongly enriched [(La/Yb)N 6.80-17.68], with light rare earth elements [(La/Sm)N 2.54-4.83] richer than heavy ones [(Gd/Yb)N 1.28-3,32], suggests that the protolith was an alkaline volcanic rock formed during the rift that generated the Espinhaço basin. The major elements indicate that the alkaline rock met weathering processes, becoming a regolith. During the Brasiliano metamorphism, it finally became hematitic phyllite. Other characteristics of the lithotype, such as the presence of sericite-bearing rounded parts (possibly formed by alteration and deformation of leucite crystals) and the preservation of igneous layering, suggest a potassic volcanic origin for hematitic phyllite. In diagram that allows identifying altered and metamorphic volcanic rocks, the investigated samples have composition similar to a feldspathoid-rich alkali-basalt, probably a leucite tephrite, a leucitite or even a lamproite, rocks from mantle source.


2021 ◽  
Author(s):  
Turgut Duzman ◽  
Ezgi Sağlam ◽  
Aral I. Okay

<p>The Upper Cretaceous volcanic and volcaniclastic rocks crop out along the Black Sea coastline in Turkey. They are part of a magmatic arc that formed as a result of northward subduction of the Tethys ocean beneath the southern margin of Laurasia. The lower part of the Upper Cretaceous volcanism in the Kefken region, 100 km northeast of Istanbul, is represented by basaltic andesites, andesites, agglomerates and tuffs, which have yielded Late Cretaceous (Campanian, ca. 83 Ma) U-Pb zircon ages. The volcanic and volcanoclastic rocks are stratigraphically overlain by shallow to deep marine limestones, which range in age from Late Campanian to Early Eocene.  Geochemically, basaltic andesites and andesites display negative anomalies in Nb, Ta and Ti, enrichment in large ion lithophile elements (LILE) relative to high field strength elements (HFSE). Light rare earth elements (LREE) show slightly enrichment relative to heavy rare earth elements (La<sub>cn</sub>/Yb<sub>cn</sub> =2.51-3.63) and there are slight negative Eu anomalies (Eu/Eu* = 0.71-0.95) in basaltic andesite and andesite samples. The geochemical data indicate that Campanian volcanic rocks were derived from the partial melting of the mantle wedge induced by hydrous fluids released by dehydration of the subducted oceanic slab.</p><p>There is also a horizon of volcanic rocks, about 230 m thick, within the Late Campanian-Early Eocene limestone sequence.  This volcanic horizon, which consists of pillow basalts, porphyritic basalts,  andesites and dacites, is of Maastrichtian age based on paleontological data from the intra-pillow sediments and U-Pb zircon ages from the andesites and dacites (72-68 Ma).  The Maastrichtian andesites and dacites are geochemically distinct from the Campanian volcanic rocks. They show distinct adakite-like geochemical signatures with high ratios of Sr/Y (>85.5), high La<sub>cn</sub>/Yb<sub>cn </sub>(16.4-23.7) ratios, low content of Y (7.4-8.6 ppm) and low content of heavy rare-earth elements (HREE). The adakitic rocks most probably formed as a result of partial melting of the subducting oceanic slab under garnet and amphibole stable conditions.</p><p>The Upper Cretaceous arc sequence in the Kefken region shows a change from typical subduction-related magmas to adakitic ones, accompanied by decrease in the volcanism.</p><p> </p><p> </p>


2009 ◽  
Vol 15 (3) ◽  
pp. 222-230 ◽  
Author(s):  
Colin M. MacRae ◽  
Nicholas C. Wilson ◽  
Joel Brugger

AbstractA method for the analysis of cathodoluminescence spectra is described that enables quantitative trace-element-level distributions to be mapped within minerals and materials. Cathodoluminescence intensities for a number of rare earth elements are determined by Gaussian peak fitting, and these intensities show positive correlation with independently measured concentrations down to parts per million levels. The ability to quantify cathodoluminescence spectra provides a powerful tool to determine both trace element abundances and charge state, while major elemental levels can be determined using more traditional X-ray spectrometry. To illustrate the approach, a scheelite from Kalgoorlie, Western Australia, is hyperspectrally mapped and the cathodoluminescence is calibrated against microanalyses collected using a laser ablation inductively coupled plasma mass spectrometer. Trace element maps show micron scale zoning for the rare earth elements Sm3+, Dy3+, Er3+, and Eu3+/Eu2+. The distribution of Eu2+/Eu3+ suggests that both valences of Eu have been preserved in the scheelite since its crystallization 1.63 billion years ago.


1991 ◽  
Vol 28 (2) ◽  
pp. 172-183 ◽  
Author(s):  
Michel Jébrak ◽  
Luc Harnois

The Taschereau stock occurs north of Timmins and Val-d'Or, Quebec, in the Abitibi greenstone belt of the Superior Province. This late Archean composite pluton is composed mainly of diorite–tonalite–trondhjemite cut by granitic rocks. Gold–molybdenum occurrences are associated with a zone of albite-rich rocks surrounding the granitic rocks. Diabase dykes and shear zones postdate all rock units. Field and geochemical evidence suggests that the Taschereau stock was emplaced diachronously. Trace-element geochemical modelling shows that trace-element abundances (rare-earth elements, Ti, Zr) of Taschereau granitic rocks are consistent with partial melting of preexisting Taschereau tonalitic rocks and implies that these two rock types are not end members of a single magma that evolved through fractional crystallization.


2022 ◽  
Vol 9 ◽  
Author(s):  
Wu Wei ◽  
Chuan-Zhou Liu ◽  
Ross N. Mitchell ◽  
Wen Yan

Triassic volcanic rocks, including basalts and dacites, were drilled from Meiji Atoll in the South China Sea (SCS), which represents a rifted slice from the active continental margin along the Cathaysia Block. In this study, we present apatite and whole rock geochemistry of Meiji dacites to decipher their petrogenesis. Apatite geochronology yielded U-Pb ages of 204–221 Ma, which are identical to zircon U-Pb ages within uncertainty and thus corroborate the formation of the Meiji volcanic rocks during the Late Triassic. Whole rock major elements suggest that Meiji dacites mainly belong to the high-K calc-alkaline series. They display enriched patterns in light rare earth elements (LREE) and flat patterns in heavy rare earth elements (HREE). They show enrichment in large-ion lithophile elements (LILE) and negative anomalies in Eu, Sr, P, Nb, Ta, and Ti. The dacites have initial 87Sr/86Sr ratios of 0.7094–0.7113, εNd(t) values of -5.9–-5.4 and εHf(t) values of -2.9–-1.7, whereas the apatite has relatively higher initial 87Sr/86Sr ratios (0.71289–0.71968) and similar εNd(t) (-8.13–-4.56) values. The dacites have homogeneous Pb isotopes, with initial 206Pb/204Pb of 18.73–18.87, 207Pb/204Pb of 15.75–15.80, and 208Pb/204Pb of 38.97–39.17. Modeling results suggest that Meiji dacites can be generated by <40% partial melting of amphibolites containing ∼10% garnet. Therefore, we propose that the Meiji dacites were produced by partial melting of the lower continental crust beneath the South China block, triggered by the underplating of mafic magmas as a response to Paleo-Pacific (Panthalassa) subduction during the Triassic. Meiji Atoll, together with other microblocks in the SCS, were rifted from the South China block and drifted southward due to continental extension and the opening of the SCS.


1997 ◽  
Vol 34 (9) ◽  
pp. 1272-1285 ◽  
Author(s):  
T. E. Smith ◽  
P. E. Holm ◽  
N. M. Dennison ◽  
M. J. Harris

Three intimately interbedded suites of volcanic rocks are identified geochemically in the Burnt Lake area of the Belmont Domain in the Central Metasedimentary Belt, and their petrogenesis is evaluated. The Burnt Lake back-arc tholeiitic suite comprises basalts similar in trace element signature to tholeiitic basalts emplaced in back-arc basins formed in continental crust. The Burnt Lake continental tholeiitic suite comprises basalts and andésites similar in trace element composition to continental tholeiitic sequences. The Burnt Lake felsic pyroclastic suite comprises rhyolitic pyroclastics having major and trace element compositions that suggest that they were derived from crustal melts. Rare earth element models suggest that the Burnt Lake back-arc tholeiitic rocks were formed by fractional crystallization of mafic magmas derived by approximately 5% partial melting of an amphibole-bearing depleted mantle, enriched in light rare earth elements by a subduction component. The modelling also suggests that the Burnt Lake continental tholeiitic rocks were formed by contamination – fractional crystallization of mixtures of mafic magmas, derived by ~3% partial melting of the subduction-modified source, and rhyolitic crustal melts. These models are consistent with the suggestion that the Belmont Domain of the Central Metasedimentary Belt formed as a back-arc basin by attenuation of preexisting continental crust above a westerly dipping subduction zone.


1993 ◽  
Vol 30 (1) ◽  
pp. 145-158 ◽  
Author(s):  
Roger H. Mitchell ◽  
R. Garth Platt ◽  
Jurate Lukosius-Sanders ◽  
Maureen Artist-Downey ◽  
Shelley Moogk-Pickard

Center III of the Coldwell alkaline complex consists of metaluminous hypersolvus syenites, which in order of intrusion are magnesiohornblende syenite, contaminated ferro-edenite syenite, ferroedenite syenite, and quartz syenite. Contaminated syenites were formed by the assimilation of coeval basaltic volcanic rocks. The suite as a whole is characterized by the presence of a wide variety of amphiboles ranging in composition from magnesiohornblende through ferroedenite and ferrorichterite to arfvedsonite. Pyroxenes are rare and hedenbergite is present in significant amounts only in quartz syenite. Whole-rock major element data indicate that the majority of the syenites do not represent liquid compositions. The syenites have high contents of Nb, Zr, Th, U, Y, and Ga and have the geochemical character of A-type granitoids. Rare earth and other trace element abundances suggest that the quartz syenites cannot be differentiates of the magma that formed the ferroedenite syenites. All syenites are considered to have originated by the extensive fractional crystallization of mantle-derived basalt magma within the plutonic infrastructure of the complex. The syenite suite does not represent the differentiation products of a single batch of magma. Multiple intrusion, contamination, and brecciation of preexisting syenite plutons have resulted in the complex geological relationships characteristic of center III.


Author(s):  
Jean H. Bédard

ABSTRACTTrace element inversion modelling of Grenvillean anorthosite massifs and associated rocks yield NMORB-normalised trace element profiles enriched in highly incompatible elements; commonly with negative Nb and Th anomalies. Model melts can be divided into subtypes that cannot be linked through fractional crystallisation processes. Most model melts are depleted in the heavy rare-earth elements and can be explained by partial melting of arc basaltic sources (5–60 melting ) with garnet-bearing residues. Some of the model melts have flat NMORB-normalised profiles (for rare-earth elements), have high compatible element contents, and might have been derived from mantle fertilised by arc magmatism, followed by low-pressure fractional crystallisation. Intermediate Ce/Yb types may represent mixtures of these end-members, or less probably, variations in the crustal source composition and residual assemblage. The active tectonic context now favoured for the Grenville Province appears to be inconsistent with plume or thermal insulation models. The heat source for crustal and mantle melting could record either post-orogenic thermal relaxation of a tectonically-thickened arc crust, or basaltic underplating caused by delamination of a mantle root or subduction slab beneath this arc crust. In this context, pre-Proterozoic anorthosites may be lacking, because prior to ca. 2·5 Ga, the crust may have been too weak to be thickened tectonically. The absence of post-Proterozoic anorthosites may be due to the secular decrease in radiogenic heating and cooling of the mantle and crust.


2017 ◽  
Vol 44 (1) ◽  
pp. 269-286 ◽  
Author(s):  
Azam Entezari Harsini ◽  
Seyed A Mazaheri ◽  
Saeed Saadat ◽  
José F Santos

Abstract This paper addresses U-Pb geochronology, Sr-Nd geochemistry, petrogenesis and tectonic setting in the Gandab volcanic rocks. The Gandab volcanic rocks belong to the Sabzevar zone magmatic arc (northeastern Iran). Petrographically, all the studied volcanic rocks indicate porphyritic textures with phenocrysts of plagioclase, K-feldespar, hornblende, pyroxene, and magnetite which are embedded in a fine to medium grained groundmass. As well, amygdaloidal, and poikilitic textures are seen in some rocks. The standard chemical classifications show that the studied rocks are basaltic trachy andesite, trachy andesite, trachyte, and trachy dacite. Major elements reveal that the studied samples are metaluminous and their alumina saturation index varies from 0.71 to 1.02. The chondrite-normalized rare earth element and mantle-normalized trace element patterns show enrichment in light rare earth elements (LREE) relative to heavy rare earth elements (HREE) and in large ion lithophile elements (LILE) relative to high field strength elements (HFSE). As well they show a slightly negative Eu anomaly (Eu/Eu* = 0.72 – 0.97). The whole-rock geochemistry of the studied rocks suggests that they are related to each other by fractional crystallization. LA-MC-ICP-MS U-Pb analyses in zircon grains from two volcanic rock samples (GCH-119 and GCH-171) gave ages ranging of 5.47 ± 0.22 Ma to 2.44 ± 0.79 Ma, which corresponds to the Pliocene period. In four samples analysed for Sr and Nd isotopes 87Sr/86Sr ratios range from 0.704082 to 0.705931 and εNd values vary between +3.34 and +5. These values could be regarded to as representing mantle derived magmas. Taking into account the comparing rare earth element (REE) patterns, an origin of the parental magmas in enriched lithospheric mantle is suggested. Finally, it is concluded that Pliocene Gandab volcanic rocks are related to the post-collision environment that followed the Neo-Tethys subduction.


1989 ◽  
Vol 26 (12) ◽  
pp. 2407-2420 ◽  
Author(s):  
Alain Tremblay ◽  
Réjean Hébert ◽  
Mario Bergeron

This paper reviews new geochemical data obtained from Ordovician volcanics in the Ascot Complex of the Quebec Appalachians. The Ascot Complex is divided into three distinctive lithotectonic assemblages: the Sherbrooke, Eustis, and Stokes domains. The Sherbrooke Domain includes basalts, pyroclastic breccias, and felsic tuffs. The Eustis Domain is composed of volcanoclastic and pyroclastic rocks. The Stokes Domain is an assemblage of rhyolitic tuffs and basalts. The geochemical composition of the volcanics varies between basaltic and rhyolitic end members. Basaltic rocks are arc tholeiites (La/Yb = 0.5–2). Some basalts found in the Sherbrooke Domain show a composition very close to that of frontal-arc boninites (La/Yb = 1–2) and are depleted of rare-earth elements. Felsic rocks from the Sherbrooke Domain are poorer in light rare-earth elements (La/Yb = 0.5–0.7) than those from the Stokes Domain (La/Yb > 2). All of the felsic rocks are characterized by a negative Eu anomaly (Eu*/Eu = 1.3–3). The Stokes felsites are derived from an enriched magma contaminated by a continental crust component. The Sherbrooke Domain felsites are derived from a source impoverished in incompatible elements and enriched in high-partition-coefficient elements. Volcanic rocks from Sherbrooke and Eustis are thought to represent an incipient intra-oceanic arc. The rocks of the Stokes assemblage represent a more mature section of the same arc, explaining the contamination of generated magmas by continental crust components. The modern architecture of the Ascot Complex is essentially tectonic and may not correspond to the initial internal structure of this Ordovician arc. [Journal Translation]


Sign in / Sign up

Export Citation Format

Share Document