Broad-scale Proterozoic deformation of the central Superior Province revealed by paleomagnetism of the 2.45 Ga Matachewan dyke swarm

1991 ◽  
Vol 28 (11) ◽  
pp. 1780-1796 ◽  
Author(s):  
M. P. Bates ◽  
H. C. Halls

An extensive paleomagnetic study of the 2.45 Ga Matachewan dyke swarm of the North American Superior Province suggests that the interior of an Archean shield can undergo broad-scale distortion as a result of later (Proterozoic) orogenic activity around the craton margins. Data collected from over 300 sites, of which 137 are reported here for the first time, reveal that the dykes contain a dual-polarity primary remanence that varies across the swarm in both inclination and declination. These regional variations are statistically significant at the 95% confidence level, and cannot be attributed to remagnetization or to magnetic anisotropy. Inclination variation is probably due to real or apparent polar wander during the emplacement of the swarm, and may in part explain the declination variation as well. However, for dykes within and northwest of the Kapuskasing Structural Zone (KSZ) a positive correlation is found between regionally averaged values of declination and dyke trend. Here the dykes appear to have suffered differential rotations about vertical axes of up to 40° since emplacement. The Matachewan swarm radiates northwards from a broad focus situated approximately in northern Lake Huron but the trend of the western half of the swarm follows a broad Z-shaped pattern where it crosses the KSZ. Our data suggest that this changing trend is a secondary feature and that the western dykes, like their eastern counterparts, originally had a more uniform trend. This large-scale distortion of the western Matachewan swarm and Archean host rocks within and north of the KSZ is probably the result of broad-scale deformation during the Trans-Hudson Orogeny at about 1.95 Ga, coeval with uplift along the KSZ.


2016 ◽  
Vol 53 (2) ◽  
pp. 119-128 ◽  
Author(s):  
Michael A. Hamilton ◽  
Kenneth L. Buchan

Otish Gabbro sills intrude sedimentary rocks in the Otish Basin of the southeastern Superior Province. Here, deposition of Otish Supergroup sediments had previously been thought to be older than K–Ar and Sm–Nd ages of ca. 1750–1710 Ma for Otish Gabbro sills, and younger than ca. 2515–2500 Ma U–Pb ages of underlying Mistassini dykes. However, a much older U–Pb baddeleyite age of 2169.0 ± 1.4 Ma is presented here for an Otish sill, indicating that they are coeval with, and likely genetically related to, the giant 2172–2167 Ma Biscotasing dyke swarm to the southwest and (or) the Cramolet sills and Payne River dykes to the north. The new date also indicates that the age of the Otish Supergroup falls between ca. 2515 Ma and ca. 2169 Ma, only a little different from the ca. 2450–2217 Ma bracket for the Huronian Supergroup of the Southern Province, and is consistent with both supergroups spanning the oxy-atmo inversion. The Otish Supergroup could also be coeval with the Sakami Formation to the north, but is likely older than the Richmond Gulf Group on the east coast of Hudson Bay. Early paleomagnetic study of Otish sills yielded a remanence ∼20° from that expected for Biscotasing-aged intrusions. This may indicate that too few distinct sills were studied to average out paleosecular variation, that demagnetization techniques failed to fully remove unstable magnetization components, or that the remanence is a stable secondary overprint, perhaps acquired during a fluid event related to uranium mineralization at ca. 1720 Ma.



1989 ◽  
Vol 26 (2) ◽  
pp. 296-304 ◽  
Author(s):  
Julie E. Gales ◽  
Ben A. van der Pluijm ◽  
Rob Van der Voo

Paleomagnetic sampling of the Lawrenceton Formation of the Silurian Botwood Group in northeastern Newfoundland was combined with detailed structural mapping of the area in order to determine the deformation history and make adequate structural corrections to the paleomagnetic data.Structural analysis indicates that the Lawrenceton Formation experienced at least two folding events: (i) a regional northeast–southwest-trending, Siluro-Devonian folding episode that produced a well-developed axial-plane cleavage; and (ii) an episode of local north-trending folding. Bedding – regional cleavage relationships indicate that the latter event is older than the regional folding.Thermal demagnetization of the Lawrenceton Formation yielded univectorial southerly and shallow directions (in situ). A fold test on an early mesoscale fold indicates that the magnetization of the Botwood postdates this folding event. However, our results, combined with an earlier paleomagnetic study of nearby Lawrenceton Formation rocks, demonstrate that the magnetization predates the regional folding. Therefore, we conclude that the magnetization occurred subsequent to the local folding but prior to the period of regional folding.While a tectonic origin for local folding cannot be entirely excluded, the subaerial nature of these volcanics, the isolated occurrence of these folds, and the absence of similar north-trending folds in other areas of eastern Notre Dame Bay suggest a syndepositional origin. Consequently, the magnetization may be nearly primary. Our study yields a characteristic direction of D = 175°, I = +43°, with a paleopole (16°N, 131 °E) that plots near the mid-Silurian track of the North American apparent polar wander path. This result is consistent with an early origin for the magnetization and supports the notion that the Central Mobile Belt of Newfoundland was adjacent to the North American craton, in its present-day position, since the Silurian.



2006 ◽  
Vol 43 (7) ◽  
pp. 749-765 ◽  
Author(s):  
S Lin ◽  
D W Davis ◽  
E Rotenberg ◽  
M T Corkery ◽  
A H Bailes

The study of lithology, geochronology, and structure in the Oxford–Stull terrane, in particular in the Gods Lake Narrows area, has led to the recognition of three distinct supracrustal sequences: ~2.8–2.9 Ga volcanic rocks; a ~2720 Ma fault-bounded package of volcanics and sandstones; and ~2705 Ma conglomerate and alkaline volcanic rocks of the Oxford Lake Group. Detrital zircon as old as 3647 Ma is present in the Oxford Lake Group. An early generation of folding and shearing occurred prior to deposition of the Oxford Lake Group and was probably synchronous with emplace ment of 2721 Ma tonalite dykes. The second generation of deformation caused south-over-north thrusting of volcanic rocks over the Oxford Lake Group. The youngest fabric resulted from east-southeast-trending, dextral, south-over-north shearing. The youngest rock dated in the area is the 2668 ± 1 Ma Magill Lake pluton, which records crustal melting following deformation. The pattern of sedimentation and deformation in this area is similar to but slightly older than that found in the southern half of the Superior Province, which shows a southward-younging diachroneity. The south-dipping north-vergent shear zones observed in the area contrast with dominantly north-dipping south-vergent structures observed and interpreted south of the North Caribou superterrane (NCS). The limited size of the study area precludes any strongly based large-scale tectonic interpretation; however, data and observations from the Gods Lake Narrows area are most easily accommodated in a model where the NCS served as a nucleus onto which other terranes were accreted and both the northern and southern margins of the NCS were Andean-type continental margins with opposite subduction polarities.



1997 ◽  
Vol 34 (4) ◽  
pp. 562-575 ◽  
Author(s):  
Matthew L. Manson ◽  
Henry C. Halls

Major reverse faults associated with the late compressional phase of the 1.1 Ga Midcontinent rift in the western Lake Superior region appear to cut across the rift at the eastern end of the lake and join with reverse faults on the eastern shoreline, defined on the basis of geological and potential field data. The continuation of the faults across eastern Lake Superior is inferred on evidence drawn from nearshore shipborne magnetic surveys together with new interpretations of published bathymetric and GLIMPCE aeromagnetic data. In the Archean Superior Province about 100 km east of Lake Superior, paleomagnetic and petrographic data from the 2.45 Ga Matachewan dyke swarm show that the Kapuskasing Zone, a narrow belt of uplifted crust, can be extended to within 50 km of the Lake Superior shoreline and has bounding reverse faults that are almost continuous with two faults of similar dip and sense of displacement that define the inversion of the Midcontinent rift in the central and western parts of the lake. Since the Kapuskasing Zone is dominantly a Paleoproterozoic (about 1.9 Ga) structure, the continuity suggests that the Lake Superior faults, whose last major activity was during the Grenville Orogen, may represent reactivation of much older faults that were part of an extended Kapuskasing structure. Within the Superior Province to the north and east of Lake Superior, published radiometric data on biotites suggest a series of alternating crustal blocks of varying tectonic stability, separated by northeast-trending faults. The Lake Superior segment of the Midcontinent rift developed within the most unstable block, bounded by the Gravel River fault to the northwest and the Ivanhoe Lake fault (the eastern margin of the Kapuskasing Zone) to the southeast.



1990 ◽  
Vol 27 (8) ◽  
pp. 1031-1039 ◽  
Author(s):  
T. A. Vandall ◽  
D. T. A. Symons

Paleomagnetic measurements have been completed on 400 specimens from dated Archean granites and Matachewan dikes in the Michipicoten and Gamitagama greenstone belts in the western Wawa Subprovince of the Superior Province, Ontario. Detailed alternating-field and thermal step demagnetization analyses were used to isolate stable remanence directions. A single-component remanence was isolated within three adjacent dated granitic plutons on the eastern margin of the Michipicoten belt, including the Hawk Lake trondhjemite, the Southern external granite, and the Eastern external granite (HSE). The maximum possible age for this remanence is constrained by the intrusion of the last pluton at 2694 Ma. The corresponding HSE paleopole is located at 10°W, 41°S (dp = 8°, dm = 13°). A second paleopole, NB, is derived from the Northern external granite and the Baldhead River quartz monzonite, which give U–Pb zircon ages of 2662 and 2668 Ma, respectively. Their single-component remanence defines a paleopole on the Archean apparent polar wander path (APWP) at 15°E, 27°S (dp = 8°, dm = 13°), with a maximum possible age of 2.66 Ga. A third paleopole, GD, is derived from the north-northwest-trending Gamitagama diabase dikes and yields a position of 57°E, 41°N (dp = 7°, dm = 14°), which agrees with poles determined by other workers from the 2454 Ma Matachewan dike swarm. The GD pole, along with previously determined Matachewan dike poles, demonstrates that a tectonically stable craton has existed since intrusion of this extensive dike swarm, and it improves the precision of the 2454 Ma Matachewan pole on the APWP. These poles, when compared with coeval poles from the eastern side of the Kapuskasing Structural Zone in the Superior Province, imply no tectonic rotation or translation between the Wawa and Abitibi subprovinces along this Early Proterozoic structure.



1999 ◽  
Vol 36 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Sally J Pehrsson ◽  
Kenneth L Buchan

U-Pb baddeleyite geochronology for two Borden diabase dykes of northern Baffin Island gives an intrusion age of ca. 720 Ma, coeval with the age established elsewhere for the Franklin igneous event. Thus, the Borden dykes belong to the Franklin dyke swarm, rather than forming a separate swarm that intruded at ca. 950-900 Ma, as has been suggested previously on the basis of paleomagnetism and K-Ar ages. As a result, the paleopole from the Borden dykes can no longer be utilized to help constrain the ca. 1050-850 Ma Grenville Loop of the North American polar wander path. Reevaluation of paleomagnetic data for the dykes of northern Baffin Island suggests that Borden dyke magnetizations resulted from superposition of a steeply directed component of chemical remanent magnetization on normal and reversed primary Franklin components. The overprint direction is consistent with a Cretaceous-Tertiary age and is likely related to normal faulting and graben development during the opening of Baffin Bay.



1996 ◽  
Vol 33 (1) ◽  
pp. 1-11 ◽  
Author(s):  
D. T. A. Symons ◽  
M. T. Lewchuk ◽  
D. R. Boyle

Several Au–Ag gossans occur over massive sulphide deposits in the Ordovician Tetagouche Group near Bathurst, New Brunswick. The Murray Brook and Heath Steele B zone goethite gossans were about 45 and 15 m thick, respectively, prior to mining. They contain no minerals suitable for radiometric age dating. Geologically they must be younger than the Devonian Acadian orogeny and older than the last glaciation. Paleomagnetic methods were used to analyse specimens from 29 sites, mostly from ore on the pit walls. Host rocks and sulphide mineralization retain characteristic remanent magnetization directions in magnetite and pyrrhotite with a variety of directions that include possible Devonian overprints. Fertile and barren gossan specimens at 21 sites retain antiparallel normal and reversed A characteristic remanence components in goethite and (or) hematite. The A direction is D = 357.7°, I = 61.7 °(α95 = 4.5°, k = 31). Its pole of 134.2°E, 85.2°N (dp = 5.4°, dm = 7.0°) falls on the North American apparent polar wander path and circumscribes the Earth's present rotational axis, indicating that the gossans formed during the Pliocene–Pleistocene. Examination of the site locations in the pits, along with the remanence polarity of their goethite and hematite A components, suggests the gossans formed during Chrons 1 and 2 only, or in the past 2.3 ± 0.3 Ma.



1993 ◽  
Vol 30 (6) ◽  
pp. 1286-1296 ◽  
Author(s):  
K. L. Buchan ◽  
J. K. Mortensen ◽  
K. D. Card

Integrated paleomagnetic and U–Pb geochronologic studies have been conducted to establish the paleomagnetic directions and ages of Early Proterozoic tholeiitic dykes of northeast trend in the southern Superior Province, previously referred to collectively as Preissac dykes. It is demonstrated that they are readily separated on the basis of paleomagnetism into subsets, referred to as the Biscotasing and Senneterre swarms. In addition a pair of unnamed dykes may be associated with the north-and northwest-trending Matachewan swarm farther west.Biscotasing dykes have a down-west magnetization of single polarity with a corresponding paleopole at 27.8°N, 136.7°W (dm = 12.3° and dp = 9.4°). Senneterre dykes carry an up-north (or occasionally down-south) direction with corresponding paleopole at 15.3°S, 75.7°W (dm = 7.0°, dp = 4.4°). The Senneterre direction is indistinguishable from the primary N1 remanence direction that dominates the magnetization of Nipissing sills of the Southern Province. Paleomagnetic field tests described herein or in earlier studies indicate that Biscotasing and Senneterre directions are primary and, hence, that two ages of intrusion are involved, with the age of Senneterre dykes coinciding with the intrusion of most Nipissing sills. U–Pb dating of baddeleyite conducted at a paleomagnetic sampling site yields an age of 2214.3 ± 12.4 Ma for the Senneterre swarm, indistinguishable from the age of 2217.2 ± 4 Ma reported from an N1 Nipissing sill site in another study. A U–Pb age on baddeleyite and zircon of 2166.7 ± 1.4 Ma was obtained from a paleomagnetic site in the Biscotasing swarm. The primary paleopoles for the Senneterre, Nipissing, and Biscotasing rocks define a direction of polar wander opposite to that of the most widely used polar wander paths for North America for this period, suggesting that these paths should no longer be used.



1996 ◽  
Vol 33 (12) ◽  
pp. 1583-1595 ◽  
Author(s):  
Kenneth L. Buchan ◽  
Henry C. Halls ◽  
James K. Mortensen

We report the first detailed study of the paleomagnetism, U–Pb geochronology and major element geochemistry of Paleoproterozoic north-trending Marathon dykes north of Lake Superior. The paleomagnetic and geochemical results demonstrate that Marathon dykes can be divided into two subsets, one of normal magnetic polarity, the other of reverse polarity. Normal and reverse Marathon paleomagnetic poles, at 43°N, 196°E (dm = 9°, dp = 7°, number of dykes N = 16) and 51°N, 175°E (dm = 9°, dp = 6°, N = 12), respectively, are statistically distinct and may indicate different ages of normal and reverse dyke emplacement, A U–Pb baddeleyite age of [Formula: see text] Ma has been obtained at a normally magnetized Marathon paleomagnetic site. The reversely magnetized Marathon dykes are undated, but have a paleopole rather close to that of the reversely magnetized [Formula: see text] Ma Fort Frances dykes and major element geochemical signatures as portrayed on Jensen plots that are identical to those of the Fort Frances swarm. Therefore, reverse Marathon and Fort Frances dykes could define a giant radiating dyke swarm focused south of Lake Superior, supporting models that associate these dykes with Paleoproterozoic rifting along the southern margin of the Superior Province. The Marathon and Fort Frances paleopoles continue a northwesterly trend in southern Superior Province paleopoles, which has recently been defined by results for [Formula: see text] Ma Senneterre dykes and 2167 ± 2 Ma Biscotasing dykes. This trend contrasts with previous widely used polar wander paths for the same period that young in the opposite direction and illustrates the importance of collaborative studies of paleomagnetism and U–Pb geochronology.



2006 ◽  
Vol 43 (7) ◽  
pp. 1071-1083
Author(s):  
M J Harris ◽  
D TA Symons ◽  
W H Blackburn ◽  
A Turek ◽  
D C Peck

This Lithoprobe-funded paleomagnetic study of the Early Proterozoic Wintering Lake granitoid body supports tectonic models that suggest continental accretion of the Trans-Hudson Orogen with the Superior Craton occurred at ~1822 Ma. Thermal demagnetization data for the granitoid specimens suggest that the magnetic remanence carriers are coarse-grained magnetite or titanomagnetite, and saturation isothermal remanence tests suggest that the magnetite is mostly multidomain. Six of seven paleomagnetic contact tests were negative, indicating that the host rocks have been remagnetized and that the granitoid body may have been partially remagnetized near its margins. Acceptable site mean remanence directions for 20 of 21 granitic sites yield a paleopole at 46.8°N, 102.2°W (with semi-axes of the 95% ellipse of confidence about the paleopole of dp = 11° and dm = 11°). The paleopole fits on the extrapolated apparent polar wander path (APWP) for the Superior craton at ~1822 Ma, which is the interpreted emplacement age of the pluton close to the peak of the Trans-Hudson orogeny. This is the first well-constrained paleomagnetic result from the Superior Province that provides direct evidence from concordant paleopoles for the Early Proterozoic accretion of the orogen to the craton. Further, the paleomagnetic results from the pluton's host rocks, along with other recent results from the Superior Boundary Zone, fill in a gap in the APWP for the craton between ~1780 and ~1720 Ma. The Superior path is now shown to form a hairpin as the craton moves from mid to polar paleolatitudes from ~1880 to ~1830 Ma, suffers a stillstand from ~1830 to ~1770 Ma during the peak of the Trans-Hudson orogeny, returns to mid-paleolatitudes from ~1770 to ~1740 Ma, and then moves on to subequatorial paleolatitudes by ~1720 Ma.



Sign in / Sign up

Export Citation Format

Share Document