Geological evolution of the northwestern Superior Province: Clues from geology, kinematics, and geochronology in the Gods Lake Narrows area, Oxford–Stull terrane, Manitoba

2006 ◽  
Vol 43 (7) ◽  
pp. 749-765 ◽  
Author(s):  
S Lin ◽  
D W Davis ◽  
E Rotenberg ◽  
M T Corkery ◽  
A H Bailes

The study of lithology, geochronology, and structure in the Oxford–Stull terrane, in particular in the Gods Lake Narrows area, has led to the recognition of three distinct supracrustal sequences: ~2.8–2.9 Ga volcanic rocks; a ~2720 Ma fault-bounded package of volcanics and sandstones; and ~2705 Ma conglomerate and alkaline volcanic rocks of the Oxford Lake Group. Detrital zircon as old as 3647 Ma is present in the Oxford Lake Group. An early generation of folding and shearing occurred prior to deposition of the Oxford Lake Group and was probably synchronous with emplace ment of 2721 Ma tonalite dykes. The second generation of deformation caused south-over-north thrusting of volcanic rocks over the Oxford Lake Group. The youngest fabric resulted from east-southeast-trending, dextral, south-over-north shearing. The youngest rock dated in the area is the 2668 ± 1 Ma Magill Lake pluton, which records crustal melting following deformation. The pattern of sedimentation and deformation in this area is similar to but slightly older than that found in the southern half of the Superior Province, which shows a southward-younging diachroneity. The south-dipping north-vergent shear zones observed in the area contrast with dominantly north-dipping south-vergent structures observed and interpreted south of the North Caribou superterrane (NCS). The limited size of the study area precludes any strongly based large-scale tectonic interpretation; however, data and observations from the Gods Lake Narrows area are most easily accommodated in a model where the NCS served as a nucleus onto which other terranes were accreted and both the northern and southern margins of the NCS were Andean-type continental margins with opposite subduction polarities.


2006 ◽  
Vol 43 (7) ◽  
pp. 929-945 ◽  
Author(s):  
C Sasseville ◽  
K Y Tomlinson ◽  
A Hynes ◽  
V McNicoll

In western Superior province, the North Caribou terrane (NCT) constitutes a Mesoarchean proto-continent heavily overprinted by Neoarchean magmatism and deformation resulting from the western Superior Province accretion. Locally, along the southern margin of the NCT, Mesoarchean (~3.0 Ga) rift sequences are preserved. These sequences are of key importance to our understanding of the early tectonic evolution of continental crust. The Wallace Lake greenstone belt is located at the southern margin of the NCT and includes the Wallace Lake assemblage, the Big Island assemblage, the Siderock Lake assemblage, and the French Man Bay assemblage. The Wallace Lake assemblage exposes one of the best-preserved Mesoarchean rift sequences along the southern margin of the NCT. The volcano-sedimentary assemblage (3.0–2.92 Ga) exposes arkoses derived from the uplift of a tonalite basement in a subaqueous environment, capped by carbonate and iron formation. Mafic to ultramafic volcanic rocks exhibiting crustal contamination and derived from plume magmatism cap this rift sequence. The Wallace Lake assemblage exhibits D1 Mesoarchean deformation. The Big Island assemblage comprises mafic volcanic rocks of oceanic affinity that were docked to the Wallace Lake assemblage along northwest-trending D2 shear zones. The timing of volcanism and docking of the Big Island assemblage remain uncertain. The Siderock Lake and French Man Bay assemblages were deposited in strike-slip basins related to D3 and D4 stages of movement of the transcurrent Wanipigow fault (<2.709 Ga). Regionally, the Wallace Lake assemblage correlates with the Lewis–Story Rift assemblage observed in Lake Winnipeg, whereas the Big Island assemblage appears to correlate with the Black Island assemblage observed in the Lake Winnipeg area. Thus, the North Caribou terrane appears to preserve vestiges of a Mesoarchean rifted succession together with overlying Neoarchean allochthonous, juvenile, volcanic successions over a considerable distance along its present-day southern margin.



2001 ◽  
Vol 13 (3) ◽  
pp. 302-311 ◽  
Author(s):  
Jens-Ove Näslund

Large-scale bedrock morphology and relief of two key areas, the Jutulsessen Nunatak and the Jutulstraumen ice stream are used to discuss glascial history and landscape development in western and central Dronning Maud Land, Antarctica. Two main landform components were identified: well-defined summit plateau surfaces and a typical alpine glacial landscape. The flat, high-elevation plateau surfaces previously were part of one or several continuous regional planation surfaces. In western Dronning Maud Land, overlying cover rocks of late Palaeozoic age show that the planation surface(s) existed in the early Permian, prior to the break-up of Gondwana. A well-develoment escarpment, a mega landform typical for passive continental margins, bounds the palaeosurface remnants to the north for a distance of at least 700 km. The Cenozoic glacial landscape, incised in the palaeosurface and escarpment, is exemplified by Jutulsessen Nunatak, where a c. 1.2 km deep glacial valley system is developed. However, the prominent Penck-Jutul Trough represents some of the deepest dissection of the palaeosurface. This originally tectonic feature is today occupied by the Jutulstraumen ice stream. New topographic data show that the bed of the Penck-Jutul Trough is situated 1.9±1.1 km below sea level, and that the total landscape relief is at least 4.2 km. Today's relief is a result of several processes, including tectonic faulting, subaerial weathering, fluvial erosion, and glacial erosion. It is probable that erosion by ice streams has deepened the tectonic troughs of Dronning Maud Land since the onset of ice sheet glaciation in the Oligocene, and continues today. An attempt is made to identify major events in the long-term landscape development of Dronning Maud Land, since the break-up of the Gondwana continent.



2020 ◽  
Vol 50 (1) ◽  
pp. 83-130 ◽  
Author(s):  
Pietari Skyttä ◽  
Pär Weihed ◽  
Karin Högdahl ◽  
Stefan Bergman ◽  
Michael B. Stephens

AbstractThe Bothnia–Skellefteå lithotectonic unit is dominated by turbiditic wacke and argillite (Bothnian basin), deposited at 1.96 (or older)–1.86 Ga, metamorphosed generally under high-grade conditions and intruded by successive plutonic suites at 1.95–1.93, 1.90–1.88, 1.87–1.85 and 1.81–1.76 Ga. In the northern part, low-grade and low-strain, 1.90–1.86 Ga predominantly magmatic rocks (the Skellefte–Arvidsjaur magmatic province) are enclosed by the basinal components. Subduction-related processes in intra-arc basin and magmatic arc settings, respectively, are inferred. Changes in the metamorphic grade and the relative timing of deformation and structural style across the magmatic province are linked to major shear zones trending roughly north–south and, close to the southern margin, WNW–ESE. Zones trending WNW–ESE and ENE–WSW dominate southwards. Slip along the north–south zones in an extensional setting initiated synchronously with magmatic activity at 1.90–1.88 Ga. Tectonic inversion steered by accretion to a craton to the east, involving crustal shortening, ductile strain and crustal melting, occurred at 1.88–1.85 Ga. Deformation along shear zones under lower-grade conditions continued at c. 1.8 Ga. Felsic volcanic rocks (1.90–1.88 Ga) host exhalative and replacement-type volcanogenic massive sulphide deposits (the metallogenic Skellefte district). Other deposits include orogenic Au, particularly along the ‘gold line’ SW of this district, porphyry Cu–Au–Mo, and magmatic Ni–Cu along the ‘nickel line’ SE of the ‘gold line’.



1977 ◽  
Vol 79 ◽  
pp. 17-25
Author(s):  
G Henderson

During the summer of 1974 and in previous years the writer mapped parts of the volcanic sequence around Niaqornat on the north coast of Nûgssuaq. The results of the regional mapping by the writer and others have been published in the Agatdal map sheet (The Geological Survey of Greenland, 1974). Certain hitherto undescribed large-scale features of the vo1canic rocks are described here.



1994 ◽  
Vol 31 (7) ◽  
pp. 1256-1286 ◽  
Author(s):  
John A. Percival ◽  
Gordon F. West

Over the past decade, the Kapuskasing uplift has been the subject of intense geological and geophysical investigation as Lithoprobe's window on the deep-crustal structure of the Archean Superior Province. Enigmatic since its recognition as a positive gravity anomaly in 1950, the structure has been variably interpreted as a suture, rift, transcurrent shear zone, or intracratonic thrust. Diverse studies, including geochronology, geothermobarometry, and various geophysical probes, provide a comprehensive three-dimensional image of Archean (2.75–2.50 Ga) crustal evolution and Proterozoic (2.5–1.1 Ga) cooling and uplift. The data favour an interpretation of the structure as an intracratonic uplift related to Hudsonian collision.Eastward across the southern Kapuskasing uplift, erosion levels increase from < 10 km in the Michipicoten greenstone belt, through the Wawa gneiss domain (10–20 km), into granulites (20–30 km) of the Kapuskasing structural zone, juxtaposed against the low-grade Swayze greenstone belt along the Ivanhoe Lake fault zone. Most volcanic rocks in the greenstone belts erupted in the interval 2750–2700 Ma and were thrust, folded, and cut by late plutons and transcurrent faults before 2670 Ma. Wawa gneisses include major 2750–2660 and minor 2920 Ma tonalitic components, deformed in several events including prominent late subhorizontal extensional shear zones prior to 2645 Ma. Supracrustal rocks of the Kapuskasing zone have model Nd ages of 2750–2700 Ma, metamorphic zircon ages of 2696–2584 Ma, and titanite ages of 2600–2493 Ma, reflecting deposition, intrusion, complex deformation, recrystallization, and cooling during prolonged deep-crustal residence. Postorogenic unroofing rapidly cooled shallow (10–20 km) parts of the Superior Province, but metamorphism and local deformation continued in the ductile deep crust, overlapping the time of late gold deposition in shear zones in the shallow brittle regime.Elevation of granulites, expressed geophysically as positive gravity anomalies and a west-dipping zone of high refraction velocities, dates from a major episode of transpressive faulting. Analysis of deformation effects in Matachewan (2454 Ma), Biscotasing (2167 Ma), and Kapuskasing (2040 Ma) dykes, as well as the brittle nature of fault rocks and cooling patterns of granulites, constrains the time of uplift to ca, 1.9 Ga. Approximately 27 km of shortening was accommodated through brittle upper crustal thrusting and ductile growth of an 8 km thick root in the lower crust that has been maintained by relatively cool, strong mantle lithosphere. The present configuration of the uplift results from overall dextral displacement in which the block was broken and deformed by dextral, normal, and sinistral faults, and modified by later isostatic adjustment. Seismic reflection profiles display prominent northwest-dipping reflectors believed to image lithological contacts and ductile strain zones of Archean age; the indistinct reflection character of the Ivanhoe Lake fault is probably related to its brittle nature formed through brecciation and cataclasis at temperatures < 300 °C. The style and orientation of Proterozoic structures may have been influenced by the Archean crustal configuration.



1988 ◽  
Vol 25 (7) ◽  
pp. 1060-1068 ◽  
Author(s):  
P. J. Hudleston ◽  
D. Schultz-Ela ◽  
D. L. Southwick

Weakly metamorphosed Archean sedimentary and volcanic rocks of the Vermilion district, northern Minnesota, occupy an east–west-trending belt between gneisses of the Vermilion granitic complex to the north and the Giants Range batholith to the south. All the measured strain, a foliation, and a mineral lineation in this belt are attributed to the "main" phase of deformation (D2). Foliation strikes parallel to the belt and dips steeply, and the mineral lineation plunges moderately to steeply east or west and is parallel to the maximum stretching direction, X, and subparallel to fold hinges. An earlier, possibly nappe-forming, event (D1) left little evidence of fabric in the Vermilion district.A number of features indicate that the D2 deformation involved a significant component of dextral strike-slip shear in addition to north–south compression. They include ductile shear zones with sigmoidal foliation patterns, shear bands, asymmetric pressure shadows, and the fact that the asymmetry of the F2 folds is predominantly Z. Other features are more simply explained by a deformation involving simple shear. The S2 cleavage is locally folded, and a new spaced cleavage developed in an orientation similar to that of the old cleavage away from the folds. We consider this the result of a process of continuous shear, with perturbations of flow resulting in folding of S2 and the development of a new foliation axial planar to the folds. The same type of perturbation can lead to the juxtaposition of zones of constrictional and flattening strains, a distinctive feature of the rocks of the Vermilion district otherwise hard to account for. The strain pattern requires a north–south component of shortening in addition to shear. The D2 deformation in the Vermilion district can therefore be characterized as one of transpression: oblique compression between two more rigid lithospheric blocks to the north and south.



Author(s):  
John Grocott ◽  
Steven C. Davies

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Grocott, J., & Davies, S. C. (1999). Deformation at the southern boundary of the late Archaean Atâ tonalite and the extent of Proterozoic reworking of the Disko terrane, West Greenland. Geology of Greenland Survey Bulletin, 181, 155-169. https://doi.org/10.34194/ggub.v181.5123 _______________ The c. 2800 Ma old Atâ tonalite in the area north-east of Disko Bugt, West Greenland has largely escaped both Archaean and Proterozoic regional deformation and metamorphism. At its southern margin the tonalite is in contact with migmatitic quartz-feldspar-biotite gneiss and to the south both are progressively deformed in a high-grade gneiss terrain. The main deformation in the high grade gneisses involved hanging wall north-west displacements on a system of low-angle ductile shear zones that structurally underlie the Atâ tonalite. This shear zone system is folded by a large-scale, steeply inclined and north-west-trending antiform defined by the change in dip of planar fabrics. Minor folds related to the antiform are present and there is some evidence that folding was synkinematic with emplacement of a suite of c. 1750 Ma old ultramafic lamprophyre dykes. In much of the north-east Disko Bugt area it remains difficult to separate Archaean from Proterozoic structures and hence the extent of the Archaean terrane that has escaped intense Proterozoic reworking remains uncertain.



1990 ◽  
Vol 27 (11) ◽  
pp. 1472-1477 ◽  
Author(s):  
Elizabeth R. King

A shaded relief magnetic map covering most of the region of exposed Precambrian rocks of north-central Wisconsin shows the structural grain and many lithologic units with clarity and comprehensive detail. The area includes part of the volcanic sequence of the Keweenawan Supergroup south of Lake Superior, the southern margin of the Archean Superior Province, the accreted island-arc terranes of the Penokean Orogen, and the Wolf River batholith. Numerous dikes are evident in the shaded relief, some being more than 200 km in length. Many of the longer dikes are reversely magnetized Keweenawan diabase associated with early extension of the Midcontinent Rift; some apparently were intruded along preexisting faults. A northwest system of dikes and faults indicated by the shaded relief map may be related to later stages of Keweenawan rifting. The Wolf River batholith is characterized by low magnetic relief associated with the predominant granitoids but includes circular plutons of highly magnetic anorthosite and a large area of magnetic rock having a signature different from the mapped anorthosite bodies. A fault bounding the western side of the batholith is paralleled by an apparent system of faults or dikes in the older terrane to the west. The magnetic map covering the Wisconsin magmatic terranes and the Archean Superior Province margin to the north is dominated by east-northeast-trending Penokean rocks. Large units of magnetic mafic rocks and less magnetic granitoid rocks are cut by a system of well-defined northeast shear zones and a more easterly trending, possibly younger set of faults, some of which contain dikes along parts of their lengths. Although the sutures bounding the magmatic terranes generally follow the magnetic trends, they do not have distinctive magnetic signatures.



1965 ◽  
Vol 2 (3) ◽  
pp. 161-175 ◽  
Author(s):  
H. D. B. Wilson ◽  
Peter Andrews ◽  
R. L. Moxham ◽  
K. Ramlal

Chemical compositions of Archaean volcanic rocks in the Superior province of the Canadian shield have been determined from 261 new analyses from 10 volcanic belts. The analyses are compared with those of the various volcanic associations. This comparison shows that the volcanic rocks of all belts belong to the basalt andesite rhyolite association typical of continental orogenic belts or island are systems. A primitive continent with continental rocks must, therefore, have existed in early Archaean time.The Keewatin lava sequences in the various belts are remnants of a great volcanic sequence that covered the southern half of the Superior province of the Canadian shield.





Sign in / Sign up

Export Citation Format

Share Document