Massive ice of the Tuktoyaktuk area, western Arctic coast, Canada

1992 ◽  
Vol 29 (6) ◽  
pp. 1235-1249 ◽  
Author(s):  
J. Ross Mackay ◽  
Scott R. Dallimore

The extensive coastal exposure of massive underground ice at Peninsula Point, southwest of Tuktoyaktuk, Northwest Territories, is believed to be intrasedimental ice. The ice grew beneath a frozen diamicton during the downward aggradation of permafrost. The water source was probably glacier meltwater, with low negative δ18O values, that flowed, under a substantial pressure, through permeable unfrozen sands. Evidence for a high water pressure is shown by ice dikes, which extend upward from the massive ice into the superincumbent diamicton. The diamicton was frozen when the dike water was injected, as proven by the chill contacts and petrofabrics. The diamicton – massive ice contact is a conformable contact with features characteristic of downward freezing. The continuity of δ18O and δD profiles from the top of the massive ice downward to a depth of 10 m into the underlying frozen sand demonstrates a common water source for the massive ice and interstitial ice in the underlying sand. A similar continuity of δ18O profiles has been determined from three drill holes at another site 15 km northeast of Tuktoyaktuk, Northwest Territories. The ages of both the diamicton and massive ice at the Peninsula Point site are uncertain, because of unexplained differences in published radiocarbon dates.

1973 ◽  
Vol 10 (6) ◽  
pp. 979-1004 ◽  
Author(s):  
J. Ross Mackay

The growth rates of 11 closed system pingos have been measured, by means of precise levelling of permanent bench marks anchored well down into permafrost, for the 1969–1972 period. As pingo growth decreases from the summit to the base, growth of the ice-core decreases from the center out to the periphery. The pingos have grown up in the bottoms of lakes which have drained rapidly and thus become exposed to permafrost aggradation. The specific site of growth is usually in a small residual pond where permafrost aggradation is retarded. The size and shape of a residual pond exercises a strong control upon the size and shape of the pingo which grows within it. The ice-core thickness equals the sum of the pingo height above the lake flat and the depth of the residual pond in which the pingo grew. Pingos tend to grow higher rather than both higher and wider. Pingos are believed to grow more by means of ice segregation than by the freezing of a pool of water. The water source, and the associated positive pore water pressure, result from permafrost aggradation in sands and silts in the lake bottom under a closed system with expulsion of pore water. The fastest growth rate of an ice-core, for the Western Arctic Coast, is estimated at about 1.5 m/yr, for the first one or two years. After that, the growth rate decreases inversely as the square root of time. The largest pingos may continue to grow for more than 1000 yr. Four growth stages are suggested. At least five pingos have commenced growth since 1935. As an estimate, probably 50 or more pingos are now growing along the coast.


2017 ◽  
Vol 37 (5) ◽  
pp. 2149-2158 ◽  
Author(s):  
Aénor Pons ◽  
Emilie Béchade ◽  
Jenny Jouin ◽  
Maggy Colas ◽  
Pierre-Marie Geffroy ◽  
...  

Processes ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 134 ◽  
Author(s):  
Weimin Yang ◽  
Zhongdong Fang ◽  
Hao Wang ◽  
Liping Li ◽  
Shaoshuai Shi ◽  
...  

In order to explore the catastrophic evolution process for karst cave water inrush in large buried depth and high water pressure tunnels, a model test system was developed, and a similar fluid–solid coupled material was found. A model of the catastrophic evolution of water inrush was developed based on the Xiema Tunnel, and the experimental section was simulated using the finite element method. By analyzing the interaction between groundwater and the surrounding rocks during tunnel excavation, the law of occurrence of water inrush disaster was summarized. The water inrush process of a karst cave containing high-pressure water was divided into three stages: the production of a water flowing fracture, the expansion of the water flowing fracture, and the connection of the water flowing fracture. The main cause of water inrush in karst caves is the penetration and weakening of high-pressure water on the surrounding rock. This effect is becoming more and more obvious as tunnel excavation progresses. The numerical simulation results showed that the outburst prevention thickness of the surrounding rock is 4.5 m, and that of the model test result is 5 m. Thus, the results of the two methods are relatively close to each other. This work is important for studying the impact of groundwater on underground engineering, and it is of great significance to avoid water inrush in tunnels.


1996 ◽  
pp. 189-198
Author(s):  
Akimasa Waku ◽  
Hideharu Miyazawa ◽  
Hiroshi Yoshino ◽  
Syunsuke Sakurai

2016 ◽  
Vol 165 ◽  
pp. 282-289 ◽  
Author(s):  
Kai-Hua Chen ◽  
Zhuo Zhang ◽  
Shao-Ming Liao ◽  
Fang-Le Peng

Sign in / Sign up

Export Citation Format

Share Document