U–Pb age constraints for deposition of clastic metasedimentary rocks and late-tectonic plutonism, Michipicoten Belt, Superior Province

1992 ◽  
Vol 29 (8) ◽  
pp. 1640-1651 ◽  
Author(s):  
F. Corfu ◽  
R. P. Sage

The study investigates the ages of clastic metasedimentary rocks and of late-tectonic alkalic to calc-alkalic intrusions and puts constraints on the timing of major deformation in the Michipicoten greenstone belt of the Wawa Subprovince. A trondhjemitic boulder in the Doré conglomerate of the southern metasedimentary belt is dated at 2698 ± 2 Ma. This is a maximum age of sedimentation that is also supported by ages of detrital zircons in the matrix and may directly reflect the time of synvolcanic deposition. Detrital zircons in metapsammites of the central and northern sedimentary belts yield younger ages of 2682 ± 3 and 2680 ± 3 Ma, respectively, suggesting that sedimentation occurred significantly later in the northern than in the southern parts of the greenstone belt. The ≤2682 Ma sedimentary rocks were affected by multiphase deformation that is related to the development of a large-scale recumbent fold and superimposed folds and faults. This tectonism was followed by the emplacement of the granodioritic Troupe Lake and Maskinonge Lake stocks that yield identical zircon and titanite ages of 2671 ± 2 Ma. The structurally older and deformed Herman Lake nepheline syenite has an imprecise titanite age of [Formula: see text]. The isotopic composition of Pb in feldspar of these intrusions is relatively evolved and, in light of geochemical considerations, may reflect provenance of the melts from enriched mantle reservoirs.

1991 ◽  
Vol 28 (4) ◽  
pp. 489-503 ◽  
Author(s):  
F. Corfu ◽  
S. L. Jackson ◽  
R. H. Sutcliffe

The paper presents U–Pb ages for zircons of the calc-alkalic to alkalic igneous suite and associated alluvial–fluvial sedimentary rocks of the Timiskaming Group in the late Archean Abitibi greenstone belt, Superior Province. The Timiskaming Group rests unconformably on pre-2700 Ma komatiitic to calc-alkalic volcanic sequences and is the expression of the latest stages of magmatism and tectonism that shaped the greenstone belt. An age of 2685 ± 3 Ma for the Bidgood quartz porphyry, an age of about 2685–2682 Ma for a quartz–feldspar porphyry clast in a conglomerate, and ages ranging from 2686 to 2680 Ma for detrital zircons in sandstones appear to reflect an early stage in the development of the Timiskaming Group. The youngest detrital zircons in each of three sandstones at Timmins, Kirkland Lake, and south of Larder Lake define maximum ages of sedimentation at about 2679 Ma; the latter sandstone is cut by a porphyry dyke dated by titanite at [Formula: see text], identical to the 2677 ± 2 Ma age for a volcanic agglomerate of the Bear Lake Formation north of Larder Lake. Similar ages have previously been reported for syenitic to granitic plutons of the region. The dominant period of Timiskaming sedimentation and magmatism was thus 2680–2677 Ma. Xenocrystic zircons found in a porphyry and a lamprophyre dyke have ages of 2750–2720 Ma, which correspond to the ages of the oldest units in the belt, predating the volumetrically dominant ca. 2700 Ma greenstone sequences. The presence of these xenocrysts and the onlapping of the Timiskaming Group on all earlier lithotectonic units of the southern Abitibi belt support the concept that the 2700 Ma ensimatic sequences were thrust onto older assemblages during a phase of compression that culminated with the generation of tonalite and granodiorite at about 2695–2688 Ma. Published geochemical data for the Timiskaming igneous suite, notably the enrichments in large-ion lithophile elements and light rare-earth elements and the relative depletion of Nb, Ta, and Ti compare with the characteristics of suites at modern convergent settings such as the Eolian and the Banda arcs and are consistent with generation of the melts from deep metasomatized mantle in the final stages of, or after cessation of, subduction. Late- and post-Timiskaming compression caused north-directed thrusting and folding. Turbiditic sedimentary units of the Larder Lake area which locally structurally overly the alluvial–fluvial sequence and were earlier thought to be part of the Timiskaming Group, appear to be older "flyschoid" sequences, possibly correlative with sedimentary rocks deposited in the Porcupine syncline at Timmins between 2700 and 2690 Ma.


2000 ◽  
Vol 37 (2-3) ◽  
pp. 291-306 ◽  
Author(s):  
J Martignole ◽  
A J Calvert ◽  
R Friedman ◽  
P Reynolds

Results of deep seismic reflection survey along a 375 km long transect of the Grenville Province in western Quebec are combined with a review of geological observations and published isotopic ages. The seismic profile offers a remarkably clear image of the crust-mantle boundary and a good definition of the various crustal blocks. Crust about 44 km thick beneath the Grenville Front zone thins abruptly to ca. 36 km southeastward, perhaps the result of extension on southeast-dipping surfaces extending to the Moho. Other zones of relatively thin crust, although less pronounced, occur where Proterozoic crust overlies Archean crust, and beneath the Morin anorthosite complex. The thickest crust is found at the extreme southeast of the transect, east of the Morin anorthosite. From northwest to southeast, three main crustal subdivisions are (1) deformed Archean rocks with southeast-dipping reflectors in the Grenville Front zone, (2) an Archean parautochthon with northwest-dipping reflectors extending to the lower crust, and (3) an overlying three-layer crust interpreted as accreted Proterozoic terranes. The boundary between (2) and (3) is a major, southeast-dipping, crustal-scale ramp (Baskatong ramp) interpreted to have accommodated strain during and after accretion. U-Pb and Pb-Pb ages on detrital zircons show that metasedimentary rocks of the allochthons (Mont-Laurier, Réservoir Cabonga, and Lac Dumoine terranes) range from Archean to as young as 1.21 Ga. A single zone with 1.4 Ga old Sm-Nd model ages appears to lack Archean components and may be considered as a fragment of juvenile Mesoproterozoic crust pinched in a shear zone (Renzy shear zone) that could be raised to the status of terrane (Renzy terrane). In the allochthons, U-Pb ages of metamorphic zircon and monazite cluster around 1.17 Ga (Mont-Laurier and Réservoir Cabonga terrane) and 1.07 Ga (Renzy and Lac Dumoine terrane) and are interpreted to record late and post-accretion crustal reworking, a common feature of the Grenville orogen. A final high-grade metamorphic event (ca. 1.0 Ga) documented only in the parautochthon and the Grenville Front zone records large-scale, piggyback-style thrusting of allochthonous slabs onto the parautochthon. The age of transcurrent displacement following peak metamorphism affecting both the allochthons and the parautochthon decreases northwestward from 1.07 to 1.00 Ga. Dating thus shows that Grenvillian deformation in western Quebec occurred in pulses over an interval of 180 million years, with a tendency to propagate from the inner part of the orogen toward the Grenville Front. Reworked migmatites from the parautochthon cooled from the ca. 1.0 Ga peak of metamorphism through about 450°C (Ar closure in hornblende) at ca. 0.96 Ga with calculated cooling rates of about 6°C per million years, and unroofing rates of 0.33 km per million years. The cooling-unroofing history of the allochthons is not so straightforward, probably due to tectonic disturbances related to allochthon emplacement. Cooling through 450°C occurred between 1.04 and 1.01 Ga, at least 50 million years earlier than cooling in the parautochthon; this contrast agrees with the northwestward propagation of the orogen.


10.1144/m54.4 ◽  
2021 ◽  
Vol 54 (1) ◽  
pp. 61-66 ◽  
Author(s):  
Andreas Scharf ◽  
Frank Mattern ◽  
Mohammed Al-Wardi ◽  
Gianluca Frijia ◽  
Daniel Moraetis ◽  
...  

AbstractThe Southeastern Oman Mountains are dominated by two major culminations: the Jabal Akhdar and Saih Hatat domes, surrounded by allochthonous and/or neo-autochthonous rocks. In the cores of both domes, folded autochthonous and par-autochthonous pre-Permian metasedimentary rocks are exposed, subjacent to the ‘Hercynian’ Unconformity. Above the unconformity are Permo--Mesozoic shelfal sedimentary rocks, characterized by carbonates. These sedimentary rocks were openly folded. The open folds are large-scale elongate structures that define the shapes of both domes. The main elongation direction is NW--SE. Doming is syn- to post-obductional. Most margins of the domes are marked by major post-obductional, extensional faults. Reactivated basement faults along the eastern margin of the Jabal Akhdar Dome may be responsible for the straight NNE-striking eastern margin which is perpendicular to the main elongation direction of the domes. The deep structure of both domes is poorly known. However, the Moho depth below the centre of the Jabal Akhdar Dome is at 50 km. We present a geological map of both domes, depicting the main faults and folds, and schematic cross-sections, parallel and perpendicular to the Oman Mountains.


2019 ◽  
Vol 484 (4) ◽  
pp. 455-459
Author(s):  
V. A. Zaika ◽  
A. A. Sorokin ◽  
V. P. Kovach ◽  
A. P. Sorokin ◽  
A. B. Kotov

The results of the U—Th—Pb geochronological studies indicate that in the Un’ja-Bom terrane the youngest peaks on the relative probability curves of ages are 207 and 212 Ma for zircons from the metasiltstone of the Kurnal formation and from the metasiltstone of the Amkan formation. Similar age estimates for the youngest peaks were obtained for the detrital zircons from the metasedimentary rocks of the Tukuringra terrain of the eastern part of the Mongol-Okhotsk belt, which indicates that the Lower Mesozoic flyschoid complexes in the structure of this belt are developed much wider than is currently believed. The results obtained in our U—Th—Pb geochronological and Sm—Nd isotope geochemical studies suggest’s that the sedimentary rocks material was carried to the sedimentation basin mainly from the continental massifs of the Amur superterrane.


1997 ◽  
Vol 34 (7) ◽  
pp. 1008-1022 ◽  
Author(s):  
James L. Crowley

The cover sequence in the Monashee complex is a platformal metasedimentary succession that occupies a nearly unique position in the Canadian Cordillera due to its unconformable contact with exposed crystalline basement. Zircon U–Pb data and field observations show that the lower part of the sequence contains Paleoproterozoic rocks, the oldest known metasedimentary rocks in the Cordilleran miogeocline, and the upper part of the sequence is Mesoproterozoic or younger. Maximum age constraints on the lower part are provided by 1.99 Ga detrital zircons from the basal unit and a 1862 ± 1 Ma orthogneiss upon which it was presumably deposited. Minimum age constraints are provided by rocks that intruded into the lower part: 1852 ± 4 Ma pegmatite, 1762 ± 6 Ma leucogranite, and 724 ± 5 Ma syenitic gneiss. The upper part of the sequence must be considerably younger than the lower part because it contains a detrital zircon dated at ~1.21 Ga. Other detrital zircons, dated at Neoarchean (2.95–2.86 Ga) and Paleoproterozoic (1.85–1.81, 1.75 Ga), suggest a source in the western Canadian Shield. These ages constrain the thickness of Mesoproterozoic and Neoproterozoic metasedimentary rocks in the cover sequence to be < 2 km. Combining these ages with previously interpreted Paleozoic deposition ages for the middle and upper parts of the sequence constrains the thickness to be <0.2 km, considerably less than that of coeval rocks above the Monashee complex in the hanging wall of the Monashee décollement. Such a contrast suggests that deposition above and below the décollement occurred in different parts of the Cordilleran miogeocline.


Author(s):  
Valentin Alain ◽  
Michelle DeWolfe ◽  
Camille Partin ◽  
Bernadette Knox

The Archean Winter Lake greenstone belt (WGB) in the Slave craton, located ~250 km northeast of Yellowknife in the Northwest Territories, has been underexplored relative to other supracrustal belts in the Slave craton, but shows potential for base-metal mineralization. It consists of lower greenschist to upper amphibolite grade mafic to felsic volcanic rocks and sedimentary rocks that are surrounded by ca. 3.3 to 2.9 Ga granitoids of the Central Slave Basement Complex (CSBC). The overall objective of this study is to better understand the origin and geodynamic evolution of the WGB and to evaluate its economic potential. The project will examine the tectonic setting of volcanic and sedimentary rocks of the WGB and their relationships to the CSBC granitoids. In 2019, three weeks were spent bedrock mapping near Newbigging Lake and one week near Big Bear Lake (at 1:5,000 and 1:10,000 scales, respectively) to generate a lithostratigraphic scheme for the southern WGB. This mapping evaluated the nature of contacts, previously interpreted as unconformities, between the CSBC, the ca. 2734-2924 Ma Central Slave Cover Group (CSCG) volcanic and sedimentary rocks, and post-volcanic sedimentary and granitoid rocks (Hrabi et al., 1995). Mapping near Big Bear Lake also allowed the examination of a previously mapped ~ 1.3-1.7 km wide rhyolite interpreted to be part of the ca. 3.3 Ga Newbigging Formation (Hrabi et al., 1995). Based on field observations, the formation does not include a rhyolite sensu stricto but rather a succession of weathered mafic to intermediate volcanic and intrusive rocks. This field season, the first of three, also led to the discovery of several semi-massive to massive sulfide showings within the mafic volcanic sequence, and the identification of sulfides (interpreted as remobilised) and multiple younging indicators within the younger conglomerate unit that are necessary for our lithostratigraphy study. Future U-Pb geochronological analysis of detrital zircon and Sm-Nd isotope geochemistry of metasedimentary rocks will enable us to determine their sources and age. Together with absolute timing of thermotectonic events, an Archean oceanic and continental crust geodynamic evolution model will be produced.  An additional goal of this study is to identify the ore-forming environment for the sulfide mineralization and to generate an ore-deposit model for the mineralisation observed in the WGB. References:Hrabi, H.B., Nelson, M.D., and Helmstaedt, H., 1995: Diverse metavolcanic sequences and late polymictic conglomerate-associated metasedimentary rocks in the Winter Lake supracrustal belt, Slave Province, Northwest Territories; in Current research 1995-E; Geological Survey of Canada, p. 137-148.


2017 ◽  
Vol 155 (6) ◽  
pp. 1230-1246 ◽  
Author(s):  
DEBIDARSANI SAHOO ◽  
KAMAL LOCHAN PRUSETH ◽  
DEWASHISH UPADHYAY ◽  
SAMEER RANJAN ◽  
DIPAK C. PAL ◽  
...  

AbstractThe Cuddapah basin in southern India, consisting of the Palnad, Srisailam, Kurnool and Papaghni sub-basins, contains unmetamorphosed and undeformed sediments deposited during a long span of time in the Proterozoic. In the absence of robust age constraints, there is considerable confusion regarding the relative timing of sedimentation in these sub-basins. In this study, U–Pb isotopic dating of zircon and U–Th–Pbtotaldating of monazite and uraninite from the gritty quartzite that supposedly belongs to the formation Banganapalle Quartzite have been used to constrain the beginning of sedimentation in the Palnad sub-basin. Magmatic and detrital zircons recording an age of 2.53 Ga indicate that the sediments were derived from the granitic basement or similar sources and were deposited after 2.53 Ga. Hydrothermally altered zircons both in the basement and the cover provide concordant ages of 2.32 and 2.12 Ga and date two major hydrothermal events. Thus, the gritty quartzite must have been deposited sometime between 2.53 and 2.12 Ga and represents the earliest sediments in the Cuddapah basin. Monazite and uraninite give a wide spectrum of ages between 2.5 Ga and 150 Ma, which indicates several pulses of hydrothermal activity over a considerable time span, both in the basement granite and the overlying quartzite. The new age constraints suggest that the gritty quartzite may be stratigraphically equivalent to the Gulcheru Quartzite that is the oldest unit in the Cuddapah basin, and that a sedimentary/erosional hiatus exists above it.


Author(s):  
Alice Cortinovis ◽  
Daniel Kressner

AbstractRandomized trace estimation is a popular and well-studied technique that approximates the trace of a large-scale matrix B by computing the average of $$x^T Bx$$ x T B x for many samples of a random vector X. Often, B is symmetric positive definite (SPD) but a number of applications give rise to indefinite B. Most notably, this is the case for log-determinant estimation, a task that features prominently in statistical learning, for instance in maximum likelihood estimation for Gaussian process regression. The analysis of randomized trace estimates, including tail bounds, has mostly focused on the SPD case. In this work, we derive new tail bounds for randomized trace estimates applied to indefinite B with Rademacher or Gaussian random vectors. These bounds significantly improve existing results for indefinite B, reducing the number of required samples by a factor n or even more, where n is the size of B. Even for an SPD matrix, our work improves an existing result by Roosta-Khorasani and Ascher (Found Comput Math, 15(5):1187–1212, 2015) for Rademacher vectors. This work also analyzes the combination of randomized trace estimates with the Lanczos method for approximating the trace of f(B). Particular attention is paid to the matrix logarithm, which is needed for log-determinant estimation. We improve and extend an existing result, to not only cover Rademacher but also Gaussian random vectors.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2431
Author(s):  
Wen Zhang ◽  
Juanjuan Wang ◽  
Xue Han ◽  
Lele Li ◽  
Enping Liu ◽  
...  

In this paper, effective separation of oil from both immiscible oil–water mixtures and oil-in-water (O/W) emulsions are achieved by using poly(dimethylsiloxane)-based (PDMS-based) composite sponges. A modified hard template method using citric acid monohydrate as the hard template and dissolving it in ethanol is proposed to prepare PDMS sponge composited with carbon nanotubes (CNTs) both in the matrix and the surface. The introduction of CNTs endows the composite sponge with enhanced comprehensive properties including hydrophobicity, absorption capacity, and mechanical strength than the pure PDMS. We demonstrate the successful application of CNT-PDMS composite in efficient removal of oil from immiscible oil–water mixtures within not only a bath absorption, but also continuous separation for both static and turbulent flow conditions. This notable characteristic of the CNT-PDMS sponge enables it as a potential candidate for large-scale industrial oil–water separation. Furthermore, a polydopamine (PDA) modified CNT-PDMS is developed here, which firstly realizes the separation of O/W emulsion without continuous squeezing of the sponge. The combined superhydrophilic and superoleophilic property of PDA/CNT-PDMS is assumed to be critical in the spontaneously demulsification process.


Sign in / Sign up

Export Citation Format

Share Document