Two decades of Geological Survey of Canada petroleum resource assessments

1993 ◽  
Vol 30 (2) ◽  
pp. 321-332 ◽  
Author(s):  
P. J. Lee

The Geological Survey of Canada has conducted petroleum resource assessments of Canadian sedimentary basins to respond to a need for information concerning the extent of Canada's energy endowment. The evolution of these activities and methods, which began in the 1970's and continue to the present, is discussed in this paper. The first assessment of Canadian basins was conducted in the 1970's using a volumetric yield method, whereby the volume of sedimentary rock in a basin was multiplied by a hydrocarbon yield per unit volume factor. Later, a Monte Carlo approach was used. It required a knowledge of the exploration plays in a given basin and made use of a variety of pool parameters expressed as cumulative probability distributions. The Monte Carlo method did not account for the biased data-set problem that came from using a selective exploration process. A third assessment method was based on geochemical data and was used to estimate the amount of hydrocarbon generated and the expulsion efficiencies. The results from each of the three methods defied detailed economic analysis.Advanced statistical methods were gradually developed in the 1980's. By the end of this period, PETRIMES (the Petroleum Exploration and Resource Evaluations System) was developed. This system evaluates hydrocarbon potential by means of an exploration play definition coupled with compiled play data used to estimate undiscovered pool sizes. During this period, discovery process models were developed to account for the biased data. Estimations of individual pool sizes in the play were made and displayed graphically so that undiscovered pools could be identified in a statistically derived population of pools. Summed quantities of petroleum in undiscovered pools were used to define remaining expected play potential.The estimated undiscovered individual pool sizes inferred from assessments serve as direct input to economic analyses that examine which pools are viable prospects under specific economic conditions. This knowledge is useful to governments formulating energy policies and to petroleum companies setting exploration priorities.

1970 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
K. G. Smith

The Basins Study Group is part of the Subsurface Section of the Bureau's Petroleum Exploration Branch and was formed in 1962 to collect and review available basic data on the sedimentary basins of Australia and Papua-New Guinea. The Core and Cuttings Laboratory forms the second part of the Subsurface Section, and the Laboratory's technical staff contribute to basin reviews by carrying out analyses of various kinds, and assist in the collection of data principally by providing thin sections of various sedimentary formations.Recent activities of the Basins Study Group include a review of the Sydney Basin, and an increased effort to assemble basic data on all sedimentary basins, with particular emphasis on the Canning and Carnarvon Basins.The review of the Sydney Basin is nearing completion. It was undertaken with the co-operation of the Geological Survey of New South Wales and received generous support from petroleum exploration companies active in the Basin. The review included detailed petrological examination of twelve wells and selected outcrop samples. The results confirmed the previously-held opinions that the reservoir characteristics of Sydney Basin sediments are generally unfavourable. At present there are no indications of untested onshore areas where an improvement in reservoir properties may occur. The Bureau petrologists detected the rare mineral dawsonite in eight wells; the mineral occurred mostly in Permian sediments, both in marine and non-marine rocks, but it was recorded also from Triassic rocks in the Kurrajong Heights No. 1 well. The review of geophysical data from the Sydney Basin was concentrated mainly on seismic work. The magnetic tapes of three surveys were replayed and considerable improvement in records was effected. Record sections of all seismic surveys were reduced photographically to a horizontal scale of 1:50,000 and the reductions were spliced to provide easily-managed cross-sections. The geophysical review is nearing completion and structure contour maps and isochrons are in preparation.The collection of basic data is done for each sedimentary basin as it becomes available, but present emphasis is on assembling data from Western Australian basins: all seismic traverses in the onshore parts of the Canning and Carnarvon Basins have been plotted at 1:250,000 scale, and with the co-operation of the Geological Survey of Western Australia, bibliographies of the Canning, Carnarvon and Perth Basins have been compiled for issue as Open-file Records. Bibliographies of the Papuan and Ipswich-Clarence Basins have also been compiled.


2011 ◽  
Vol 51 (1) ◽  
pp. 549 ◽  
Author(s):  
Chris Uruski

Around the end of the twentieth century, awareness grew that, in addition to the Taranaki Basin, other unexplored basins in New Zealand’s large exclusive economic zone (EEZ) and extended continental shelf (ECS) may contain petroleum. GNS Science initiated a program to assess the prospectivity of more than 1 million square kilometres of sedimentary basins in New Zealand’s marine territories. The first project in 2001 acquired, with TGS-NOPEC, a 6,200 km reconnaissance 2D seismic survey in deep-water Taranaki. This showed a large Late Cretaceous delta built out into a northwest-trending basin above a thick succession of older rocks. Many deltas around the world are petroleum provinces and the new data showed that the deep-water part of Taranaki Basin may also be prospective. Since the 2001 survey a further 9,000 km of infill 2D seismic data has been acquired and exploration continues. The New Zealand government recognised the potential of its frontier basins and, in 2005 Crown Minerals acquired a 2D survey in the East Coast Basin, North Island. This was followed by surveys in the Great South, Raukumara and Reinga basins. Petroleum Exploration Permits were awarded in most of these and licence rounds in the Northland/Reinga Basin closed recently. New data have since been acquired from the Pegasus, Great South and Canterbury basins. The New Zealand government, through Crown Minerals, funds all or part of a survey. GNS Science interprets the new data set and the data along with reports are packaged for free dissemination prior to a licensing round. The strategy has worked well, as indicated by the entry of ExxonMobil, OMV and Petrobras into New Zealand. Anadarko, another new entry, farmed into the previously licensed Canterbury and deep-water Taranaki basins. One of the main results of the surveys has been to show that geology and prospectivity of New Zealand’s frontier basins may be similar to eastern Australia, as older apparently unmetamophosed successions are preserved. By extrapolating from the results in the Taranaki Basin, ultimate prospectivity is likely to be a resource of some tens of billions of barrels of oil equivalent. New Zealand’s largely submerged continent may yield continent-sized resources.


1993 ◽  
Vol 30 (2) ◽  
pp. 261-277 ◽  
Author(s):  
Jacob Verhoef ◽  
Walter R. Roest

The emergence and wide acceptance of plate tectonics has had a profound influence on the way we look at the Earth. Starting as a theory to explain similarities in coast lines across the Atlantic, plate tectonics has become a unifying theory in the earth sciences. In this paper, we describe the role of staff of the Geological Survey of Canada in the developing and refining of this theory. At the same time, we illustrate the effect plate tectonics has had on our understanding of the evolution of offshore eastern Canada. Of critical importance in this development was the unique data set collected by systematic surveying of this region, largely by the Geological Survey of Canada, making the Grand Banks of Newfoundland one of the best-studied offshore areas in the world. Plate tectonic theory not only offers a framework for the evolution of ocean basins, continental margins, and their sedimentary basins, but also for the assemblage of continents.


Author(s):  
Flemming G. Christiansen ◽  
Anders Boesen ◽  
Jørgen A. Bojesen-Koefoed ◽  
James A. Chalmers ◽  
Finn Dalhoff ◽  
...  

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Christiansen, F. G., Boesen, A., Bojesen-Koefoed, J. A., Chalmers, J. A., Dalhoff, F., Dam, G., Ferré Hjortkjær, B., Kristensen, L., Melchior Larsen, L., Marcussen, C., Mathiesen, A., Nøhr-Hansen, H., Pedersen, A. K., Pedersen, G. K., Pulvertaft, T. C. R., Skaarup, N., & Sønderholm, M. (1999). Petroleum geological activities in West Greenland in 1998. Geology of Greenland Survey Bulletin, 183, 46-56. https://doi.org/10.34194/ggub.v183.5204 _______________ In the last few years there has been renewed interest for petroleum exploration in West Greenland and licences have been granted to two groups of companies: the Fylla licence operated by Statoil was awarded late in 1996; the Sisimiut-West licence operated by Phillips Petroleum was awarded in the summer of 1998 (Fig. 1). The first offshore well for more than 20 years will be drilled in the year 2000 on one of the very spectacular structures within the Fylla area. To stimulate further petroleum exploration around Greenland – and in particular in West Greenland – a new licensing policy has been adopted. In July 1998, the administration of mineral and petroleum resources was transferred from the Danish Ministry of Environment and Energy to the Bureau of Minerals and Petroleum under the Government of Greenland in Nuuk. Shortly after this, the Greenlandic and Danish governments decided to develop a new exploration strategy. A working group consisting of members from the authorities (including the Geological Survey of Denmark and Greenland – GEUS) made recommendations on the best ways to stimulate exploration in the various regions on- and offshore Greenland. The strategy work included discussions with seismic companies because it was considered important that industry acquires additional seismic data in the seasons 1999 and 2000.


2004 ◽  
Vol 2004 (8) ◽  
pp. 421-429 ◽  
Author(s):  
Souad Assoudou ◽  
Belkheir Essebbar

This note is concerned with Bayesian estimation of the transition probabilities of a binary Markov chain observed from heterogeneous individuals. The model is founded on the Jeffreys' prior which allows for transition probabilities to be correlated. The Bayesian estimator is approximated by means of Monte Carlo Markov chain (MCMC) techniques. The performance of the Bayesian estimates is illustrated by analyzing a small simulated data set.


2018 ◽  
Vol 34 (3) ◽  
pp. 1247-1266 ◽  
Author(s):  
Hua Kang ◽  
Henry V. Burton ◽  
Haoxiang Miao

Post-earthquake recovery models can be used as decision support tools for pre-event planning. However, due to a lack of available data, there have been very few opportunities to validate and/or calibrate these models. This paper describes the use of building damage, permitting, and repair data from the 2014 South Napa Earthquake to evaluate a stochastic process post-earthquake recovery model. Damage data were obtained for 1,470 buildings, and permitting and repair time data were obtained for a subset (456) of those buildings. A “blind” prediction is shown to adequately capture the shape of the recovery trajectory despite overpredicting the overall pace of the recovery. Using the mean time to permit and repair time from the acquired data set significantly improves the accuracy of the recovery prediction. A generalized model is formulated by establishing statistical relationships between key time parameters and endogenous and exogenous factors that have been shown to influence the pace of recovery.


Sign in / Sign up

Export Citation Format

Share Document