Age and origin of Late Jurassic and Paleocene granitoids, Nelson Batholith, southern British Columbia

1993 ◽  
Vol 30 (12) ◽  
pp. 2305-2314 ◽  
Author(s):  
J. H. Sevigny ◽  
R. R. Parrish

In the Middle Jurassic Nelson Batholith, southern British Columbia, young 40Ar/39Ar ages (i.e., 50–60 Ma) and distorted isobaric surfaces in the batholith suggest the possibility of Paleocene granitic plutonism. We present the results of a study undertaken to evaluate this possibility. Geochemical criteria successfully distinguish a suite of granitoids within the Nelson Batholith that differ from Nelson granites of similar SiO2 content. The granitoid suite is composed of 71.6–75.7 wt.% SiO2 leucocratic biotite granite and quartz monzonite with strong enrichments in alkaline, alkaline earth, and rare earth elements. Nd and Pb isotopic compositions suggest that biotite granite and quartz monzonite are not related. Biotite granite yields a U–Pb age of 158.9 ± 0.6 Ma (concordant zircons). Quartz monzonite crystallized at 61 ± 1 Ma, based on interpretation of titanite and zircon analyses. Zircons from this sample lie along a line from 61 to 160 Ma and demonstrate the presence of Middle Jurassic inheritance. Based on its petrographic and isotopic similarity to other Middle Jurassic plutons in the Nelson Batholith – Valhalla Complex area, we include the 159 Ma biotite granite with the Jurassic plutonic suite. This result demonstrates that magmatism in southern British Columbia was active at least until the early Late Jurassic (Oxfordian). The Paleocene (61 Ma) quartz monzonite that intrudes the southern Nelson Batholith is the structurally highest occurrence of "Ladybird" granite yet documented in southern British Columbia. Comparison of new and published geochemical and isotopic data for Paleocene granitoids throughout the southern Omineca Belt, British Columbia, suggests that these granitoids were not derived from a single, old crustal source.


2012 ◽  
Vol 183 (4) ◽  
pp. 307-318 ◽  
Author(s):  
Ugur Kagan Tekin ◽  
M. Cemal Göncüoglu ◽  
Seda Uzuncimen

Abstract The Bornova Flysch Zone (BFZ) in NW Anatolia comprises several olistoliths or tectonic slivers, representing various parts of the Izmir-Ankara ocean. Radiolarian assemblages extracted from one of the olistoliths of the BFZ, cropping out along the Sögütlü section, to the NE Manisa city, were studied in detail. The lowermost part of the section contains latest Bajocian – early Callovian radiolarian taxa, followed by radiolarian assemblages indicating Late Jurassic to early Late Cretaceous (Cenomanian) ages. Previous studies reveal that the Izmir-Ankara oceanic basin was initially opened during late Ladinian – early Carnian. The new radiolarian data obtained from this olistolith reveals that relatively condensed, and possibly more or less continuous, pelagic sedimentation took place during the late Middle Jurassic to early Late Cretaceous in a non-volcanic oceanic basin closer to the Tauride-Anatolide platform margin.



2019 ◽  
Vol 37 (12) ◽  
pp. 1366-1372 ◽  
Author(s):  
Vinoth Kumar Kuppusamy ◽  
Maria Holuszko


2016 ◽  
Vol 52 (3) ◽  
pp. 470-488 ◽  
Author(s):  
Hao Zou ◽  
Yi Fang ◽  
Shou-Ting Zhang ◽  
Qiang Zhang


2013 ◽  
Vol 51 (3) ◽  
pp. 415-438 ◽  
Author(s):  
X. D. Che ◽  
R. L. Linnen ◽  
R. C. Wang ◽  
L. A. Groat ◽  
A. A. Brand


Author(s):  
Victoria B. Omotunde ◽  
Akinade S. Olatunji ◽  
Maryam O. Abdus-Salam

The Rare Earth Elements (REE) composition of granitoids in and around Ila-Orangun area Southwestern Nigeria was assessed in order to ascertain their potential for possible exploitation. Detailed lithological mapping of the area was undertaken followed by whole rock geochemical analysis of representative samples of the granitoids using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) technique. Petrographic study of the samples was carried out as well as the interpretation of the geochemical data using diverse geochemical discrimination plots. The rock units mapped were biotite granite gneiss, granite gneiss and hornblende biotite granite. Biotite hornblende gneiss, quartzite, talc-chlorite-tremolite-schist, mica schist and pegmatites were the surrounding country rocks. The REE concentrations (in ppm) revealed higher concentrations of the light REEs compared to the heavy REEs. The fractionation ratio, (La/Yb)N ranged from 4.35-15.04 (granite gneiss) and 13.78-18.48 (hornblende biotite granite) indicating enrichment in LREEs over the HREEs. The spider plot for the REEs also showed that the granitoids are LREE-enriched and HREE-depleted suggesting fractional crystallisation and a distinct negative Eu anomaly indicating plagioclase fractionation. Enrichment plot also revealed that the REEs in the granitoids are significantly enriched. Comparison with other areas showed that the granitoids of the study area especially the hornblende biotite granite has higher concentrations of REEs and may be a possible pointer of REE mineralisation.



2020 ◽  
Author(s):  
Remi J.G. Charton

Our understanding of the Earth’s interior is limited by the access we have of its deep layers, while the knowledge we have of Earth’s evolution is restricted to harvested information from the present state of our planet. We therefore use proxies, physical and numerical models, and observations made on and from the surface of the Earth. The landscape results from a combination of processes operating at the surface and in the subsurface. Thus, if one knows how to read the landscape, one may unfold its geological evolution.In the past decade, numerous studies have documented km-scale upward and downward vertical movements in the continental rifted margins of the Atlantic Ocean and in their hinterlands. These movements, described as exhumation (upward) and subsidence (downward), have been labelled as “unpredicted” and/or “unexpected”. ‘Unpredicted’ because conceptual, physical, and numerical models that we dispose of for the evolution of continental margins do not generally account for these relatively recent observations. ‘Unexpected’ because the km-scale vertical movements occurred when our record of the geological history is insufficient to support them. As yet, the mechanisms responsible for the km-scale vertical movements remain enigmatic.One of the common techniques used by geoscientists to investigate the past kinematics of the continental crust is to couple ‘low-temperature thermochronology’ and ‘time-temperature modelling’. In Morocco alone, over twenty studies were conducted following this approach. The reason behind this abundance of studies and the related enthusiasm of researchers towards Moroccan geology is due to its puzzling landscapes and complex history. In this Thesis, we investigate unconstrained aspects of the km-scale vertical movements that occurred in Morocco and its surroundings (Canary Islands, Algeria, Mali, and Mauritania). The transition area between generally subsiding domains and mostly exhuming domains, yet poorly understood, is discussed via the evolution of a profile, running across the rifted continental margin (chapter 2). Low-temperature thermochronology data from the central Morocco coastal area document a km-scale exhumation between the Permian and the Early/Middle Jurassic. The related erosion fed sediments to the subsiding Mesozoic basin to the northwest. Basement rocks along the transect were subsequently buried between the Late Jurassic and the Early Cretaceous. From late Early/Late Cretaceous onwards, rocks present along the transect were exhumed to their present-day position.The post-Variscan thermal and geological history of the Anti-Atlas belt in central Morocco is constrained with a transect constructed along strike of the belt (chapter 3). The initial episode occurred in the Late Triassic and led to a km-scale exhumation of crustal rocks by the end of the Middle Jurassic. The following phase was characterised by basement subsidence and occurred during the Late Jurassic and most of the Early Cretaceous. The basement rocks were then slowly brought to the surface after experiencing a km-scale exhumation throughout the Late Cretaceous and the Cenozoic. The exhumation episodes extended into the interior of the African tectonic plate, perhaps beyond the sampled belt itself. Exhumation rates and fluxes of material eroded from the hinterlands of the Moroccan rifted margin were quantified from the Permian (chapter 4). The high denudation rates, obtained in central Morocco during the Early to Middle Jurassic and in northern Morocco during the Neogene, are comparable to values typical of rift flank, domal, or structural uplifts. These are obtained in central Morocco during the Early to Middle Jurassic and in northern Morocco during the Neogene. Exhumation rates for other periods in northern to southern Morocco average around ‘normal’ denudation values. Periods of high production of sediments in the investigated source areas are the Permian, the Jurassic, the Early Cretaceous, and the NeogeneThe Phanerozoic evolution of source-to-sink systems in Morocco and surroundings is illustrated in several maps (chapter 5). Substantial shifts in the source areas were evidenced between the central and northern Moroccan domains during the Middle-Late Jurassic and between the Meseta and the Anti-Atlas during the Early-Late Cretaceous. Finally, the mechanisms responsible for the onset and subsistence of the unpredicted km-scale vertical movements are discussed (chapter 6). We propose that a combination of the large-scale crustal folding, mantle-driven dynamic topography, and thermal subsidence, superimposed to changes in climates, sea level and erodibility of the exposed rocks, were crucial to the timing, amplitude, and style of the observed vertical movements.The km-scale vertical movements will continue to be studied for years to come. Expectantly, this Thesis will deliver sufficiently robust grounds for further elaborated and integrated studies in Morocco and beyond.



1995 ◽  
Vol 32 (10) ◽  
pp. 1759-1776 ◽  
Author(s):  
J. Brian Mahoney ◽  
Richard M. Friedman ◽  
Sean D. McKinley

The Harrison Lake Formation is an Early to Middle Jurassic volcanic-arc assemblage unconformably overlying Triassic oceanic basement in the eastern Coast Belt of southwestern British Columbia. The formation is subdivided into four members including, in ascending order, the Celia Cove Member (conglomerate), the Francis Lake Member (fine-grained strata), the Weaver Lake Member (flows and breccias), and the Echo Island Member (pyroclastic and epiclastic strata). New biostratigraphic constraints pinpoint the initiation of volcanism to late early Toarcian. U–Pb geochronology demonstrates the arc was active until at least late Bajocian–early Bathonian time (166.0 ± 0.4 Ma), and that the timing of arc volcanism strongly overlaps emplacement of both hypabyssal intrusions (Hemlock Valley stock) and deep-seated plutons (Mount Jasper pluton) within and adjacent to the arc. Geochemical data indicate the arc is of medium- to high-K calc-alkaline affinity, and is strongly light rare earth element enriched (LaN/YbN = 1.5 – 2.5). Nd and Sr isotopic data from primary volcanic rocks demonstrate the juvenile nature of the magmatic system, but isotopic data from associated fine-grained sedimentary rocks suggest temporally controlled variations in isotopic composition interpreted to represent two-component mixing between juvenile volcanic detritus and a more evolved detrital component. The succession of facies in the Harrison Lake Formation records initial basin subsidence in the Early Jurassic, initiation of explosive volcanism in the late early Toarcian, a change to effusive volcanism in the early Aalenian, and late-stage explosive volcanism in the late Bajocian. The Harrison Lake Formation contains mesoscopic folds and overturned bedding that are absent in the overlying Callovian Mysterious Creek Formation, strongly suggesting the existence of a regional Bathonian deformational event in the southern Coast Belt.



1980 ◽  
Vol 22 (4) ◽  
pp. 297-298 ◽  
Author(s):  
I. N. Ganiev ◽  
T. A. Li ◽  
A. V. Vakhobov ◽  
V. I. Asanov


Sign in / Sign up

Export Citation Format

Share Document