Evolution of a Middle Jurassic volcanic arc: stratigraphic, isotopic, and geochemical characteristics of the Harrison Lake Formation, southwestern British Columbia

1995 ◽  
Vol 32 (10) ◽  
pp. 1759-1776 ◽  
Author(s):  
J. Brian Mahoney ◽  
Richard M. Friedman ◽  
Sean D. McKinley

The Harrison Lake Formation is an Early to Middle Jurassic volcanic-arc assemblage unconformably overlying Triassic oceanic basement in the eastern Coast Belt of southwestern British Columbia. The formation is subdivided into four members including, in ascending order, the Celia Cove Member (conglomerate), the Francis Lake Member (fine-grained strata), the Weaver Lake Member (flows and breccias), and the Echo Island Member (pyroclastic and epiclastic strata). New biostratigraphic constraints pinpoint the initiation of volcanism to late early Toarcian. U–Pb geochronology demonstrates the arc was active until at least late Bajocian–early Bathonian time (166.0 ± 0.4 Ma), and that the timing of arc volcanism strongly overlaps emplacement of both hypabyssal intrusions (Hemlock Valley stock) and deep-seated plutons (Mount Jasper pluton) within and adjacent to the arc. Geochemical data indicate the arc is of medium- to high-K calc-alkaline affinity, and is strongly light rare earth element enriched (LaN/YbN = 1.5 – 2.5). Nd and Sr isotopic data from primary volcanic rocks demonstrate the juvenile nature of the magmatic system, but isotopic data from associated fine-grained sedimentary rocks suggest temporally controlled variations in isotopic composition interpreted to represent two-component mixing between juvenile volcanic detritus and a more evolved detrital component. The succession of facies in the Harrison Lake Formation records initial basin subsidence in the Early Jurassic, initiation of explosive volcanism in the late early Toarcian, a change to effusive volcanism in the early Aalenian, and late-stage explosive volcanism in the late Bajocian. The Harrison Lake Formation contains mesoscopic folds and overturned bedding that are absent in the overlying Callovian Mysterious Creek Formation, strongly suggesting the existence of a regional Bathonian deformational event in the southern Coast Belt.


1990 ◽  
Vol 27 (11) ◽  
pp. 1456-1461 ◽  
Author(s):  
R. M. Friedman ◽  
J. W. H. Monger ◽  
H. W. Tipper

A new U–Pb date of [Formula: see text] for foliated felsic metavolcanic rocks of the Bowen Island Group, from Mount Elphinstone in the southwesternmost Coast Mountains of British Columbia, indicates that there the age of this hitherto undated unit is early Middle Jurassic. These rocks grade along strike to the north-northwest into a more sedimentary facies, which north of Jervis Inlet contains a probable Sinemurian (Lower Jurassic) ammonite. The Bowen Island Group thus appears to include Lower and Middle Jurassic rocks and to be coeval in part with volcanic rocks of the Bonanza Formation on Vancouver Island to the west and the Harrison Lake Formation within the central Coast Mountains 75 km to the east.



1998 ◽  
Vol 35 (5) ◽  
pp. 556-561 ◽  
Author(s):  
P J Patchett ◽  
G E Gehrels ◽  
C E Isachsen

Nd isotopic data are presented for a suite of metamorphic and plutonic rocks from a traverse across the Coast Mountains between Terrace and Prince Rupert, British Columbia, and for three contrasting batholiths in the Omineca Belt of southern Yukon. A presumed metamorphic equivalent of Jurassic volcanic rocks of the Stikine terrane gives epsilon Nd = +6, and a number of other metaigneous and metasedimentary rocks in the core of the Coast Mountains give epsilon Nd values from +3 to +7. A single metasedimentary rock approximately 3 km east of the Work Channel shear zone gives a epsilon Nd value of -9. Coast Belt plutons in the traverse yield epsilon Nd from -1 to +2. The Omineca Belt plutons give epsilon Nd from -10 to -17. All results are consistent with published data in demonstrating that (i) juvenile origins for both igneous and metamorphic rocks are common in the Coast Belt; (ii) representatives of a continental-margin sedimentary sequence with Precambrian crustal Nd are tectonically interleaved in the Coast Mountains; (iii) Coast Mountains plutons can be interpreted as derived from a blend of metamorphic rocks like those seen at the surface, or as arc-type melts contaminated with the older crustal component; and (iv) Omineca Belt plutons are dominated by remelted Precambrian crustal rocks.



1987 ◽  
Vol 24 (11) ◽  
pp. 2279-2291 ◽  
Author(s):  
Margaret E. Rusmore

Several lower Mesozoic, fault-bounded units separate the Intermontane and Insular superterranes in southwestern British Columbia. Detailed study of one of these Mesozoic units, the Cadwallader Group, helps clarify the boundary between the superterranes and establish the tectonic evolution of southwestern British Columbia. The Cadwallader Group is the oldest unit in an Upper Triassic through Middle Jurassic volcanic and sedimentary tectono-stratigraphic terrane. Two formations, the Pioneer and the Hurley, compose the Cadwallader Group; the previously recognized Noel Formation is no longer considered valid. The Pioneer Formation contains pillow basalt, flows, and basalt breccia. Siltstone, sandstone, conglomerate, and minor amounts of limestone megabreccia and basalt belonging to the Hurley Formation conformably overlie the Pioneer. The Hurley spans latest Carnian or earliest Norian to middle Norian time. Two episodes of deformation affected the Cadwallader, and a thrust fault separates the group from slightly younger clastic rocks of the Tyaughton Group. Similarities in clastic rocks indicate the Tyaughton was deposited on the Cadwallader; together the units form the Cadwallader terrane. Basalts and clastic rocks in the terrane record deposition in or near a Carnian to earliest Norian volcanic arc. Volcanism waned later in the Norian, but presence of the arc is preserved in the clastic rocks.Oceanic rocks of the Middle Triassic to Middle Jurassic Bridge River terrane became juxtaposed with the Cadwallader terrane in Middle Jurassic time, after which the terranes functioned as a single tectonic block. Contrasting volcanic histories suggest that the Cadwallader terrane was not accreted to the Intermontane superterrane until Middle Jurassic or Early Cretaceous time, although the similar tectonic settings of Stikinia and the Cadwallader terrane allow a common earlier history. The Cadwallader terrane is not part of either the Alexander terrane or Wrangellia, and so the inboard margin of the Insular superterrane must lie west of the Cadwallader terrane.



1993 ◽  
Vol 30 (12) ◽  
pp. 2305-2314 ◽  
Author(s):  
J. H. Sevigny ◽  
R. R. Parrish

In the Middle Jurassic Nelson Batholith, southern British Columbia, young 40Ar/39Ar ages (i.e., 50–60 Ma) and distorted isobaric surfaces in the batholith suggest the possibility of Paleocene granitic plutonism. We present the results of a study undertaken to evaluate this possibility. Geochemical criteria successfully distinguish a suite of granitoids within the Nelson Batholith that differ from Nelson granites of similar SiO2 content. The granitoid suite is composed of 71.6–75.7 wt.% SiO2 leucocratic biotite granite and quartz monzonite with strong enrichments in alkaline, alkaline earth, and rare earth elements. Nd and Pb isotopic compositions suggest that biotite granite and quartz monzonite are not related. Biotite granite yields a U–Pb age of 158.9 ± 0.6 Ma (concordant zircons). Quartz monzonite crystallized at 61 ± 1 Ma, based on interpretation of titanite and zircon analyses. Zircons from this sample lie along a line from 61 to 160 Ma and demonstrate the presence of Middle Jurassic inheritance. Based on its petrographic and isotopic similarity to other Middle Jurassic plutons in the Nelson Batholith – Valhalla Complex area, we include the 159 Ma biotite granite with the Jurassic plutonic suite. This result demonstrates that magmatism in southern British Columbia was active at least until the early Late Jurassic (Oxfordian). The Paleocene (61 Ma) quartz monzonite that intrudes the southern Nelson Batholith is the structurally highest occurrence of "Ladybird" granite yet documented in southern British Columbia. Comparison of new and published geochemical and isotopic data for Paleocene granitoids throughout the southern Omineca Belt, British Columbia, suggests that these granitoids were not derived from a single, old crustal source.



2021 ◽  
Vol 11 (18) ◽  
pp. 8318
Author(s):  
Athanasios G. Ouzounis ◽  
George A. Papakostas

Identifying the provenance of volcanic rocks can be essential for improving geological maps in the field of geology and providing a tool for the geochemical fingerprinting of ancient artifacts like millstones and anchors in the field of geoarchaeology. This study examines a new approach to this problem by using machine learning algorithms (MLAs). In order to discriminate the four active volcanic regions of the Hellenic Volcanic Arc (HVA) in Southern Greece, MLAs were trained with geochemical data of major elements, acquired from the GEOROC database, of the volcanic rocks of the Hellenic Volcanic Arc (HVA). Ten MLAs were trained with six variations of the same dataset of volcanic rock samples originating from the HVA. The experiments revealed that the Extreme Gradient Boost model achieved the best performance, reaching 93.07% accuracy. The model developed in the framework of this research was used to implement a cloud-based application which is publicly accessible at This application can be used to predict the provenance of a volcanic rock sample, within the area of the HVA, based on its geochemical composition, easily obtained by using the X-ray fluorescence (XRF) technique.



1986 ◽  
Vol 23 (12) ◽  
pp. 1963-1973 ◽  
Author(s):  
Robert C. Thomson ◽  
Paul L. Smith ◽  
Howard W. Tipper

The Lower to Middle Jurassic (Pliensbachian to lower Bajocian) Spatsizi Group in the northern Spatsizi area of north-central British Columbia is formally defined and subdivided into the Joan, Wolf Den, Melisson, Abou, and Quock formations. Each formation reflects deposition in a different, dominantly fine-clastic environment with a varying input of volcanic (epiclastic or pyroclastic) detritus. The Spatsizi Group represents the basinward sedimentary equivalent of the coeval Cold Fish Volcanics, a group of calc-alkaline flows and breccias that accumulated in a volcanic arc along the southern flank of the Stikine Arch. Arc-to basin-facies trends are best developed in the Joan and Wolf Den formations and are characterized by a decrease in the volcaniclastic component of the sediments, an overall reduction in grain size, and a progressively deeper water environment of deposition, as inferred from both sedimentological and faunal evidence.In the study area, the Spatsizi Group underlies with a slight angular discordance the Middle to Upper Jurassic Bowser Lake Group. Bowser lake sediments were deposited in the Bowser Basin, the largest Mesozoic successor basin in British Columbia. Based on evidence from the Spatsizi area and from other areas to the south at Diagonal Mountain and the Oweegee Mountains, the Spatsizi Group is interpreted as passing laterally into shales that underlie most of the Bowser Basin.



1992 ◽  
Vol 29 (5) ◽  
pp. 854-864 ◽  
Author(s):  
Craig H. B. Leitch ◽  
C. T. Hood ◽  
Xiao-Lin Cheng ◽  
A. J. Sinclair

Rocks hosting the Silver Queen epithermal Au–Ag–Zn–Pb–Cu vein deposit near Owen Lake, British Columbia, belong to the Tip Top Hill volcanics. They are lithologically similar to the informally named Upper Cretaceous Kasalka Group rocks exposed in the type area at Tahtsa Lake, 75 km southwest of the deposit, and at Mount Cronin, 100 km northwest of the deposit. The Kasalka Group rocks in the Tahtsa Lake area give questionable dates of 105 ± 5 Ma by K–Ar on whole rock but are cut by intrusions dated at 83.8 ± 2.8 Ma by K–Ar on biotite. The sequence at the Silver Queen deposit includes a polymictic conglomerate, followed upward by felsic fragmental rocks and a thick porphyritic andesite flow and sill unit, cut by microdiorite and quartz–feldspar porphyry intrusions. The porphyritic andesite and the microdiorite have been dated as Late Cretaceous (78.3 ± 2.7 and 78.7 ± 2.7 Ma, respectively, by K–Ar on whole rock), close to previous dates for these rocks (77.1 ± 2.7 and 75.3 ± 2.0 Ma, respectively). The quartz–feldspar porphyry intrudes the porphyritic andesites but has an older U–Pb zircon date of 84.6 ± 0.2 Ma, probably due to underestimation of the true age of the host rocks by the K–Ar whole-rock method. Later dykes correlate with younger volcanic rocks belonging to the Ootsa Lake and Endako groups. Eocene pre- and postmineral plagioclase-rich dykes (51.9 ± 1.8 to 51.3 ± 1.8 Ma) and late diabase dykes (50.4 ± 1.8 Ma; all by K–Ar on whole rock) may be correlative with trachyandesite volcanics of the Goosly Lake Formation, part of the Eocene Endako Group. These volcanics have been dated elsewhere at 55.6 ± 2.5 to 48.8 ± 1.8 Ma by K–Ar on whole rock and biotite, respectively. Mineralization at Silver Queen is therefore similar in age to, but slightly younger than, the producing Equity mine located 30 km to the northeast, which is estimated at 58.5 ± 2.0 Ma by K–Ar on whole rock.



2017 ◽  
Vol 44 (3) ◽  
pp. 249 ◽  
Author(s):  
Stella Poma ◽  
Adriana Ramos ◽  
Vanesa D. Litvak ◽  
Sonia Quenardelle ◽  
Emma B. Maisonnave ◽  
...  

A Miocene to Pliocene (13 to 4.6 Ma) mostly pyroclastic sequence is exposed along the Iglesia Valley, to the east of the former main volcanic arc. This area is a transitional region between Cordillera Frontal and Precordillera, over the f lat slab segment of the Southern Central Andes, at 29º30’ S to 30º00’ S. New radiometric ages, geochemical data, petrography and field relationships are evaluated to establish differences and similarities between Miocene arcrelated sequences across the main arc and its expansion towards a back arc position, in western Precordillera. Analyzed rocks have a magmatic arc signature partially like the former main volcanic arc to the west. The Iglesia Valley rocks are LREE-enriched (La/Sm: 3.7-6.5) with respect to HREE (Sm/Yb: 2.2-6.0) and define patterns with a pronounced slope. Sm/Yb ratios generally increase with time, as pressures increase, with retention of HREE in residual mineralogy, particularly garnet at Sm/Yb>4. Volcanic activity in Cordillera Frontal and the volcanic-volcaniclastic expression in Precordillera show a continuous increase in the La/Yb ratio with decreasing age. Variations in the residual mineralphase equilibrating with magmas would be related to the progressive increase in crustal thickness due to the tectonic compressive regime resulting from shallow subduction since Middle Miocene. The data presented suggest that the arc magmatic activity during the Miocene was expanded notably to the East in relation to the location of the main arc at Valle del Cura, in Cordillera Frontal. The extensive amplitude of the volcanic arc activity is indicative of the slab gradual f lattening. Particularly, the mantle-derived magmas from Lomas del Campanario Formation (Western Precordillera) are enriched by subduction related f luids but also by crustal components. It is interpreted that the cause of the geochemical differences between the back arc position rocks and the main arc lay in the heterogeneous composition of the underlying continental crust involved in both locations. Presence of volcanic rocks with adakitic geochemical affinity probably ref lect astenospheric-derived melts that interacted through a heterogeneous and thickened crust toward the surface.



Author(s):  
Aurelie Germa ◽  
Danielle Koebli ◽  
Paul Wetmore ◽  
Zachary Atlas ◽  
Austin Arias ◽  
...  

Abstract Exposed plumbing systems provide important insight into crystallization and differentiation in shallow sills beneath volcanic fields. We use whole rock major element, trace element and radiogenic isotopic compositions, along with mineral geochemical data on 125 samples to examine the conditions of melt differentiation in shallow sills from the exposed 4-Ma-old San Rafael subvolcanic field (SRVF), Utah. The field consists of ∼2000 dikes, 12 sills and 63 well preserved volcanic conduits. Intrusive rocks consist of mainly fine-grained trachybasalts and coarse-grained syenites, which are alkaline, comagmatic and enriched in Ba, Sr and LREE. Within sills, syenite is found as veins, lenses, and sheets totally enveloped by the basalt. The SRVF intrusions have geochemical signatures of both enriched sub-continental lithospheric and asthenospheric mantle sources. We estimate partial melting occurred between 1·2 and 1·9 GPa (50–70 km), with mantle potential temperatures in the range 1260–1326 ± 25°C, consistent with those estimated for volcanic rocks erupted on the Colorado Plateau. Geobarometry results based on clinopyroxene chemistry indicate that (1) basalt crystallized during ascent from at least 40 km deep with limited lithospheric storage, and (2) syenites crystallized only in the sills, ∼1 km below the surface. San Rafael mafic magma was emplaced in sills and started to crystallize inward from the sill margins. Densities of basalt and syenite at solidus temperatures are 2·6 and 2·4 g/cc, respectively, with similar viscosities of ∼150 Pa s. Petrographic observations and physical properties suggest that syenite can be physically separated from basalt by crystal compaction and segregation of the tephrophonolitic residual liquid out of the basaltic crystal mush after reaching 30–45% of crystallization. Each individual sill is 10–50 m thick and would have solidified fairly rapidly (1–30 years), the same order of magnitude as the duration of common monogenetic eruptions. Our estimates imply that differentiation in individual shallow sills may occur during the course of an eruption whose style may vary from effusive to explosive by tapping different magma compositions. Our study shows that basaltic magmas have the potential to differentiate to volatile-rich magma in shallow intrusive systems, which may increase explosivity.



2001 ◽  
Vol 38 (4) ◽  
pp. 619-637 ◽  
Author(s):  
R M Friedman ◽  
L J Diakow ◽  
R A Lane ◽  
J K Mortensen

New U–Pb ages and K–Ar dates, primarily for rocks proximal to mineral occurrences in the Fawnie Range of central British Columbia, document latest Cretaceous (ca. 74–66 Ma) continental-arc igneous activity and date associated base and precious metal mineralization. U–Pb ages of ca. 73–69 Ma for the Capoose pluton and hypabyssal to extrusive garnet rhyolites at the Capoose prospect demonstrate a latest Cretaceous age for mineralization and a likely plutonic source for mineralizing fluids. A U–Pb age of ca. 67 Ma for a late mineralized felsic dyke and two K–Ar dates (ca. 70 and 68 Ma) for hornfelsed Jurassic volcanic rocks at the Blackwater–Davidson prospect constrain a latest Cretaceous age for mineralization. A U–Pb age of ca. 74 Ma for a fine grained diorite sill that cuts a significant epithermal gold vein at the Tsacha prospect places a minimum age on mineralization at this probable Jura-Cretaceous deposit and documents latest Cretaceous magmatism. Latest Cretaceous K–Ar dates are reported for an andesite flow adjacent to the Eocene Holy Cross deposit (ca. 66 Ma), about 35 km north of the Fawnie Range, and a Kasalka Group rhyolite (ca. 68 Ma) exposed near the western margin of the Nechako Plateau. Latest Cretaceous magmatism and mineralization in the Fawnie Range represent the waning stages of Bulkley suite magmatism and porphyry-style mineralization, which was concentrated along the western margin of the Nechako Plateau at circa 88–70 Ma. The distribution of latest Cretaceous arc igneous rocks along the North American Cordilleran is reviewed and tectonic implications discussed.



Sign in / Sign up

Export Citation Format

Share Document