Structure and stratigraphy of the south flank of the Kisseynew Domain in the Trans-Hudson Orogen, Manitoba: implications for 1.845-1.77 Ga collision tectonics

1999 ◽  
Vol 36 (11) ◽  
pp. 1859-1880 ◽  
Author(s):  
Herman V Zwanzig

On the south flank of the Kisseynew Domain, orthogneisses derived from 1.92-1.85 Ga volcano-plutonic rocks are overlain by paragneisses (Burntwood and Missi groups) derived from 1.855-1.84 Ga marine turbidite and 1.845-1.83 Ga terrestrial clastic and volcanic rocks. The sediments in these groups are interpreted as having been shed into the Kisseynew paleobasin from an active margin bordering the Flin Flon Belt. The sedimentation apparently followed early microcontinental collision and accompanied the last arc magmatism in the Trans-Hudson Orogen. The sedimentary rocks and their basement were deformed into a complexly refolded stack of large recumbent folds. Premetamorphic F1 structures represent a fold and thrust system initiated during the sedimentation. These structures are interpreted as transported toward the Kisseynew Domain in the northeast and the hinterland in the southwest. F2 structures (~1.82 Ga) comprise westerly transported nappes. During 1.82-1.80 Ga high-grade metamorphism, the early structures were overturned, amplified, and refolded. Basement-cored culminations and sheet-like synforms of paragneiss were horizontally attenuated and transported south and southwest. North- and northeast-trending F4 folds and F5 faults formed after 1.79 Ga. The whole cycle of deformation is related to stages of continental collision between the internal (juvenile) zone of the Trans-Hudson Orogen and the three surrounding Archean cratons (Sask, Superior, and Hearne). The F4 upright folds and steep F5 faults are interpreted as the record of intracontinental transpression, strongly controlled by the Superior Craton boundary.


1938 ◽  
Vol 75 (5) ◽  
pp. 193-218 ◽  
Author(s):  
Gilbert Wilson

Summary and ConclusionsThe composite granodiorite batholith of the Kopaonik Mountains forms one of the more southerly members of the peri-Adriatic tonalitic intrusions. In the area discussed in this paper it intrudes a series of sedimentary rocks which range from dominantly calcareous to pelitic types. Metamorphism of these rocks has produced crystalline limestones, skarns, and calc-silicate hornfelses, which grade downwards into mica-, amphibole-, epidote-, and locally cordierite-bearing rocks. The pelitic and amphibole-bearing hornfelses are in immediate proximity to the batholith on the surface. The amphibole-bearing types are mainly confined to a relatively small area, well within the zone of high-grade metamorphism and overlying the southerly pitching nose of the intrusion. With them are associated hornfelses which carry porphyroblasts of albitic feldspar. It appears that the persistence of the amphibole and the development of these feldspar porphyroblasts may have been caused by hydrous and probably sodic emanations which permeated the sediments above and ahead of the advancing igneous mass.



2016 ◽  
Vol 53 (12) ◽  
pp. 1443-1457 ◽  
Author(s):  
Lucie Mathieu ◽  
Rose-Anne Bouchard ◽  
Vital Pearson ◽  
Réal Daigneault

The Coulon deposit is a volcanogenic massive sulphide (VMS) system in the James Bay area, Superior craton, Quebec, that was metamorphosed to amphibolite-facies conditions. The chemistry and mineralogy of the VMS-related alteration halo proximal to the mineralized sulphide lenses are investigated, using samples collected in the field and 5583 chemical analyses provided by Osisko Ltd. Alteration is quantified using mass balance and normative calculations, and the application and performance of these methods in an exploration context are investigated. In VMS systems, altered rocks proximal to the ore zones are characterized by multi-element metasomatism, which is best quantified by mass balance methods that have been successfully applied in the study area. However, mass balance calculations necessitate the documentation of a precursor, which is not always possible in an exploration context; therefore, an alternative method (i.e., alteration indices) was also evaluated. In most VMS systems, proximal alteration is characterized by chlorite (chloritization), muscovite (sericitization), and quartz (silicification), while at the Coulon deposit, altered rocks contain mostly cordierite, biotite, sillimanite, and quartz. Alteration indices were calculated using observed and normative minerals, and provide satisfactory results similar to those obtained with mass balance calculations. Using these results, recommendations are made to estimate the intensity of alteration in the core shack using the proportions of observed minerals. Alteration indices are sensitive to the composition of precursors; and because of high-grade metamorphism, chloritization and sericitization are not precisely quantified. Recognizing these limitations is essential to successful quantification of alteration in areas metamorphosed to high-grade conditions.



1999 ◽  
Vol 36 (11) ◽  
pp. 1829-1842 ◽  
Author(s):  
N Machado ◽  
H Zwanzig ◽  
M Parent

The Kisseynew Domain is a metasedimentary belt in the central Reindeer Zone of the Trans-Hudson Orogen. It is bounded by 1.92-1.86 Ga volcanic-plutonic belts to the north and south, by an Archean terrane to the east (Superior Province), and by a volcanic-plutonic terrane underlain by an Archean terrane to the southwest (Glennie Domain). The Kisseynew Domain developed in an arc-related setting in the final stages of plate convergence involving the northward migration of arc-ocean floor complexes toward the Archean Hearne Craton. Terminal collision, involving also the Superior Craton, originated multiple fold-thrust systems and high-grade metamorphism. U-Pb ages of 1874-1860 Ma for pretectonic plutonic units in southern Kisseynew Domain are identical to ages of plutonism intruding the arc-ocean floor accretionary complex in the Flin Flon domain (Amisk collage) and indicate its northern extension. Deposition of the Burntwood Group turbidites started at ca. 1860 Ma, indicating uplift and erosion of the volcanic complexes and was coeval with arc magmatism that succeeded the Amisk collage. From 1848 Ma, Burntwood sedimentation was coeval with deposition of Missi Group continental sediments, with continental arc magmatism and early deformation. New and published ages for detrital zircon indicate that sediments were derived both from local 1.89-1.84 Ga units and also from 2.55-2.36 Ga sources. The latter suggest that a Neoarchean-Paleoproterozoic cratonic block was undergoing erosion, remnants of which occur in the Flin Flon Belt. Basin closure started after 1823 Ma and is marked by regional high-grade metamorphism lasting for ca. 30 million years from 1818 Ma to 1785 Ma; late- to posttectonic metamorphic activity lasted until ca. 1775 Ma.



1999 ◽  
Vol 36 (2) ◽  
pp. 293-312 ◽  
Author(s):  
Kevin M Ansdell ◽  
Karen A Connors ◽  
Richard A Stern ◽  
Stephen B Lucas

Lithological and structural mapping in the east Wekusko Lake area of the Flin Flon Belt, Trans-Hudson Orogen, suggested an intimate relationship between magmatism, fluvial sedimentation, and initiation of fold and thrust belt deformation. Conventional U-Pb geochronology of volcanic rocks in fault-bounded assemblages provides a minimum age of 1876 ± 2 Ma for McCafferty Liftover back-arc basalts, and ages of between 1833 and 1836 Ma for the Herb Lake volcanic rocks. A rhyolite which unconformably overlies Western Missi Group fluvial sedimentary rocks has complex zircon systematics. This rock may be as old as about 1856 Ma or as young as 1830 Ma. The sedimentary rocks overlying this rhyolite are locally intercalated with 1834 Ma felsic volcanic rocks, and yield sensitive high resolution ion microprobe (SHRIMP) U-Pb and Pb-evaporation detrital zircon ages ranging from 1834 to 2004 Ma. The Eastern Missi Group is cut by an 1826 ± 4 Ma felsic dyke, and contains 1832-1911 Ma detrital zircons. The dominant source for detritus in the Missi Group was the Flin Flon accretionary collage and associated successor arc rocks. The fluvial sedimentary rocks and the Herb Lake volcanic rocks were essentially coeval, and were then incorporated into a southwest-directed fold and thrust belt which was initiated at about 1840 Ma and active until at least peak regional metamorphism.



1981 ◽  
Vol 18 (7) ◽  
pp. 1211-1227 ◽  
Author(s):  
Christopher Brooks ◽  
Richard J. Wardle ◽  
Toby Rivers

The Shabogamo intrusive suite, a predominantly gabbroic magma series intrusive into a variety of Archean, Aphebian, and Helikian units in the Churchill and Grenville Provinces of western Labrador, is reliably dated at circa 1375 Ma using both the Rb/Sr and Sm/Nd methods on whole rocks and mineral separates. The suite is thus synchronous with Elsonian magmatism in Labrador, which is characterized by the intrusion of large volumes of gabbroic, anorthositic, and associated magma, and so invites petrogenetic correlations on a regional scale.Gabbros of the Shabogamo intrusive suite are emplaced into volcanics and volcaniclastics of the Blueberry Lake group, which are provisionally dated at 1540 ± 40 Ma. The volcanic rocks are therefore of similar age to, and probably correlative with, the upper Petscapiskau Group and Bruce River Group felsic volcanics, which occur further east in a narrow belt within the Grenville Foreland zone. The linear disposition of centres of felsic volcanism in the Grenville Foreland zone about 1500 Ma ago is suggestive of the development of a major ensialic rift at least 300 km in length at that time. A twofold magmatic history during the Helikian of this part of Labrador is now emerging from the field mapping and geochronological studies. Early extrusive felsic volcanism about 1500 Ma ago confined to a linear belt immediately north of the Grenville Province was followed by voluminous mafic magmatism (with emplacement of gabbroic, anorthositic, and associated rocks) occurring over a wide area both within and outside of the present location of the Grenville Province.Rb/Sr dating of Aphebian quartzofeldspathic schists from within the Grenville Province near Wabush – Labrador City shows that the high-grade metamorphism and development of a penetrative schistosity were Grenvillian features formed about 1000 Ma ago. This result effectively precludes the possibility of a Hudsonian metamorphic imprint, a feasible interpretation that was raised during regional mapping of the area.



1973 ◽  
Vol 110 (4) ◽  
pp. 365-371 ◽  
Author(s):  
A. Choudhuri

SummaryThe northern part of the Guiana Shield consists of large tracts of basic and intermediate volcanic rocks and sediments which are thought to have formed under geosynclinal conditions. During the 2000 m.y. Trans-Amazonian Orogeny these rocks were subjected to tectonism and metamorphism resulting in a broad belt of green schist facies with local and isolated patches of high grade metamorphic rocks and gneiss complexes. In the early stages of orogeny during which folding and probable block faulting of the sediments and volcanics took place, these rocks were intruded by basic and ultra-basic rocks giving rise to metagabbro-amphibolite-peridotite associations, commonly in the areas of subsequent high-grade metamorphism. In an attempt to account for the frequent supply of basic magma during and after the orogeny it is postulated that mantle peridotites rose diapir-like below the sinking geosyncline, and by partial melting not only provided basic magmas but also thermal energy which spread upwards to metamorphose the already tectonized crustal rocks; recent gravity measurements indicate an upwarped ‘sima’ under the Bartica Assemblage gneiss complex.



1992 ◽  
Vol 29 (12) ◽  
pp. 2583-2594 ◽  
Author(s):  
Kevin M. Ansdell ◽  
T. Kurtis Kyser ◽  
Mel R. Stauffer ◽  
Garth Edwards

The Missi Formation in the Flin Flon Basin forms part of a discontinuous series of molasse-type sediments found throughout the Early Proterozoic Trans-Hudson Orogen in northern Saskatchewan and Manitoba. The Flin Flon Basin contains a sequence of proximal-fan to braided-stream fluvial conglomerates and sandstones, which unconformably overlie subaerially weathered Amisk Group volcanic rocks. Stratigraphic way-up indicators have been preserved, even though these rocks have undergone greenschist-facies metamorphism and polyphase deformation. The sedimentary rocks are crosscut by intrusive rocks, which provide a minimum age of sedimentation of 1840 ± 7 Ma.Detrital zircons from each of the six stratigraphic subdivisions of the Flin Flon Basin were analyzed using the single-zircon Pb-evaporation technique. Euhedral to slightly rounded zircons dominate each sample, and these zircons give ages of between about 1854 and 1950 Ma. The Missi sediments were thus deposited between 1840 and 1854 Ma. Possible sources for the detrital zircons are Amisk Group felsic volcanic rocks and post-Amisk granitoid rocks and orthogneisses in adjacent domains within the Trans-Hudson Orogen. However, the immature character of the sedimentary rocks, the composition of clasts, the euhedral character of many of the zircons, and the range in ages suggest that most were likely derived from Amisk Group and granitoid rocks in the western Flin Flon Domain. Rounded zircons are uncommon but provide evidence for the reworking of older Proterozoic sedimentary rocks, or a distant Archean or Early Proterozoic granitoid terrane.



1974 ◽  
Vol 66 ◽  
pp. 12-20
Author(s):  
S Pedersen ◽  
O Larsen ◽  
D Bridgwater ◽  
J Watterson

The metamorphosed supracrustal rocks and paragneisses studied were collected during a reconnaissance traverse across the trend of the Ketilidian mobile belt in South-Bast Greenland (Andrews et al., 1971, 1973). All the samples are taken from gneisses regarded as derived from supracrustal material which was originally composed of acid volcanic material deposited as lavas, ignimbrites or sediments with a large volcanic component. Sample localities are shown in fig. 2. All the rocks have been affected by at least one metamorphic episode during the formation of the Ketilidian mobile belt. All are regarded as deposited after the end of regional high grade metamorphism in the Archaean block to the north (which has yielded a U/Pb zircon diffusion age of 2808 m.y.) and are intruded by a variety of synto late tectonic granites within the Ketilidian mobile belt which have yielded U/Pb diffusion and concordia ages between 1850 and 1770 m.y. in this area (Gulson & Krogh, 1972).



2005 ◽  
Vol 42 (7) ◽  
pp. 1389-1400 ◽  
Author(s):  
E H Brown ◽  
T J Lapen ◽  
R Mark Leckie ◽  
Isabella Premoli Silva ◽  
Davide Verga ◽  
...  

New ages of rocks in the San Juan Islands, northwest Washington, significantly change our understanding of the evolution of the San Juan Islands thrust system. Re-examination of foraminifera-bearing mudstones at Richardson on Lopez Island indicates a late Aptian (112–115 Ma), not late Albian (100 Ma) age as currently presented in the literature. The age brackets of thrusting, marked by these pre-thrusting mudstones and 84-Ma post-thrusting sedimentary rocks, span a much longer period than previously thought, diminishing controls on rates of displacement in the thrust system and the timing of regional deformation in western Washington. New 40Ar/39Ar plateau ages of phengite in blueschist-facies meta-volcanic rock, also at Richardson, are 124 ± 0.7 Ma (2σ, late Barremian). These blueschist-facies volcanic rocks are in fault contact with the fossiliferous mudstones. Therefore, the blueschist-facies metamorphism at Richardson, previously inferred to be associated with the thrusting, now appears to have occurred prior to thrusting. Further, the Ar ages demonstrate that blueschist-facies fabric formed earlier than the thrust event and is therefore not directly useful in analyzing the thrusting kinematics. The Richardson 40Ar/39Ar age is similar to isotopic ages found in the eastern San Juan Islands and in the Shuksan blueschist terrane in the northwest Cascades, and thus fits into an emerging regional age pattern of blueschist-facies metamorphism during Late Jurassic – Early Cretaceous (up to Barremian) but not late Albian – Cenomanian. If this pattern is more broadly confirmed for the San Juan Islands, all the blueschist-facies metamorphism can be regarded as having formed in subduction zones elsewhere along the continental margin rather than in the anomalous setting of an on-land thrust system, as in the San Juan Islands.



Sign in / Sign up

Export Citation Format

Share Document