Consequences of potential density-dependent mechanisms on recovery of ocean-type chinook salmon (Oncorhynchus tshawytscha)

2004 ◽  
Vol 61 (4) ◽  
pp. 590-602 ◽  
Author(s):  
Correigh M Greene ◽  
Timothy J Beechie

Restoring salmon populations depends on our ability to predict the consequences of improving aquatic habitats used by salmon. Using a Leslie matrix model for chinook salmon (Oncorhynchus tshawytscha) that specifies transitions among spawning nests (redds), streams, tidal deltas, nearshore habitats, and the ocean, we compared the relative importance of different habitats under three density-dependent scenarios: juvenile density independence, density-dependent mortality within streams, delta, and nearshore, and density-dependent migration among streams, delta, and nearshore. Each scenario assumed density dependence during spawning. We examined how these scenarios influenced priorities for habitat restoration using a set of hypothetical watersheds whose habitat areas could be systematically varied, as well as the Duwamish and Skagit rivers. In all watersheds, the three scenarios shared high sensitivity to changes in in nearshore and ocean mortality and produced similar responses to changes in other parameters controlling mortality (i.e., habitat quality). However, the three scenarios exhibited striking variation in population response to changes in habitat area (i.e., capacity). These findings indicate that nearshore habitat relationships may play significant roles for salmon populations and that the relative importance of restoring habitat area will depend on the mechanism of density dependence influencing salmon stocks.

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Arild Wikan

A discrete age-structured semelparous Leslie matrix model where density dependence is included both in the fecundity and in the survival probabilities is analysed. Depending on strength of density dependence, we show in the precocious semelparous case that the nonstationary dynamics may indeed be rich, ranging from SYC (a dynamical state where the whole population is in one age class only) dynamics to cycles of low period where all age classes are populated. Quasiperiodic and chaotic dynamics have also been identified. Moreover, outside parameter regions where SYC dynamics dominates, we prove that the transfer from stability to instability goes through a supercritical Neimark−Sacker bifurcation, and it is further shown that when the population switches from possessing a precocious to a delayed semelparous life history both stability properties and the possibility of periodic dynamics become weaker.


2020 ◽  
Author(s):  
Richard B. Lanman ◽  
Linda Hylkema ◽  
Cristie M. Boone ◽  
Brian Alleé ◽  
Roger O. Castillo ◽  
...  

Understanding a species’ historic range guides contemporary management and habitat restoration. Chinook salmon ( Oncorhynchus tshawytscha ) are an important commercial and recreational gamefish, but nine Chinook subspecies are federally threatened or endangered due to anthropomorphic impacts. Several San Francisco Bay Area streams and rivers currently host spawning Chinook populations, but government agencies consider these non-native hatchery strays. Using ichthyofaunal analysis of 17,288 fish specimens excavated from Native American middens at Mission Santa Clara circa 1781-1834 CE, 86 salmonid vertebrae were identified. Ancient DNA sequencing identified three of these as from Chinook salmon and the remainder from steelhead trout. These findings comprise the first physical evidence of the nativity of salmon to the Guadalupe River in San Jose, California, extending their historic range to include San Francisco Bay’s southernmost watershed.


2003 ◽  
Vol 60 (8) ◽  
pp. 971-985 ◽  
Author(s):  
Kevin S McCann ◽  
Louis W Botsford ◽  
Alan Hasting

In searching for causes of fluctuations in marine populations, investigators often assume that populations respond on the same time scale as the environmental forcing period, but this may not hold true. Here we show how the response of populations to variable recruitment changes with the degree of overcompensation using models of two species with similar age structure but different density-dependent recruitment, chinook salmon (Oncorhynchus tshawytscha) and Dungeness crab (Cancer magister). For compensatory density dependence, as in chinook salmon, variability in recruitment tends to follow the period in environmental variability over all time scales. For overcompensatory density dependence, as in Dungeness crab, variability in recruitment follows the environmental variability only for periods much greater than the maximum age of the population. For periods in environmental variability less than the maximum age, the dominant period of the population response is slightly larger than the length of the age structure. Here, strong overcompensatory recruitment acts to filter out potentially good recruitment years, resulting in dominant periodicities slightly larger than the length of the age structure. These mechanisms appear to explain the differences between observed spectra of Dungeness crab and chinook salmon.


2021 ◽  
Author(s):  
Colby L. Hause ◽  
Gabriel P. Singer ◽  
Rebecca A. Buchanan ◽  
Dennis E. Cocherell ◽  
Nann A. Fangue ◽  
...  

AbstractExtirpation of the Central Valley spring-run Chinook Salmon ESU (Oncorhynchus tshawytscha) from the San Joaquin River is emblematic of salmonid declines across the Pacific Northwest. Habitat restoration and fish reintroduction efforts are ongoing, but recent telemetry studies have revealed low outmigration survival of juveniles to the ocean. Previous investigations have focused on modeling survival relative to river discharge and geographic regions, but have largely overlooked the effects of habitat variability. To evaluate the link between environmental conditions and survival of juvenile spring-run Chinook Salmon, we combined high spatial resolution habitat mapping approaches with acoustic telemetry along a 150 km section of the San Joaquin River during the spring of 2019. While overall outmigration survival was low (5%), our habitat-based classification scheme described variation in survival of acoustic-tagged smolts better than other candidate models based on geography or distance. There were two regional mortality sinks evident along the longitudinal profile of the river, revealing poor survival in areas that shared warmer temperatures but that diverged in chlorophyll-α, fDOM, turbidity and dissolved oxygen levels. These findings demonstrate the value of integrating river habitat classification frameworks to improve our understanding of survival dynamics of imperiled fish populations. Importantly, our data generation and modeling methods can be applied to a wide variety of fish species that transit heterogeneous and diverse habitat types.


2003 ◽  
Vol 60 (10) ◽  
pp. 1266-1280 ◽  
Author(s):  
Joseph L Ebersole ◽  
William J Liss ◽  
Christopher A Frissell

Heterogeneity in stream water temperatures created by local influx of cooler subsurface waters into geomorphically complex stream channels was associated with increased abundance of rainbow trout (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) in northeastern Oregon. The addition of cold water patch frequency and area as explanatory variables in salmonid habitat models indicated that doubling of cold water patch frequency was associated with increases in rainbow trout and chinook salmon abundances of 31% and 59%, respectively. Doubling of cold water patch area was associated with changes of 10% in rainbow trout abundance but was not associated with chinook abundance after accounting for other habitat factors. The physiognomy, distribution, and connectivity of cold water patches, important attributes determining the effectiveness of these habitats as thermal refuges for stream fishes, were associated with channel bedform and riparian features. Monitoring of thermal heterogeneity and salmonid populations in response to ongoing habitat restoration efforts will provide additional insights into causal relationships among these factors.


Parasitology ◽  
1990 ◽  
Vol 101 (1) ◽  
pp. 75-92 ◽  
Author(s):  
M. E. Scott

SUMMARYThe population dynamics of outbred laboratory mice in indoor enclosures in the absence and presence of a naturally transmitted direct life-cycle nematode Heligmosomoides polygyrus Dujardin 1845 were reported previously. This manuscript presents further information on the age and sex structure of the populations, results of experiments designed to estimate the density-dependent effect of the parasite on host survival and reproduction, and a mathematical model of both uninfected and infected mouse populations. In the uninfected mouse population, survival of female mice was age- and density-independent, survival of male mice was age-dependent and density-independent, and recruitment was density-dependent. Independent experiments revealed that the parasite had no density-dependent effect on mouse reproduction, but had density-dependent effects on both acute and chronic survival of mice. An age-structured Leslie matrix model captured the exponential growth and plateau of the uninfected mouse population. Modification of the model to incorporate the effects of the parasite provided a good fit to the data from the infected populations, supporting the hypothesis that density-dependent effects of the parasite on host survival could lead to regulation of host abundance.


2019 ◽  
Vol 76 (7) ◽  
pp. 1212-1226 ◽  
Author(s):  
Morgan H. Bond ◽  
Tyler G. Nodine ◽  
Tim J. Beechie ◽  
Richard W. Zabel

In the Pacific Northwest, widespread stream channel simplification has led to a loss of habitat area and diversity for rearing salmon. Subsequent efforts throughout the Columbia River basin (CRB) have attempted to restore habitats altered through land development to recover imperiled salmon populations. However, there is scant evidence for demographic change in salmon populations following restoration. We used a process-based approach to estimate the potential benefit of floodplain reconnection throughout the CRB to Chinook salmon (Oncorhynchus tshawytscha) parr. Using satellite imagery, we measured stream habitats at 2093 CRB stream reaches to construct random forest models of habitat based on geomorphic and regional characteristics. Connected floodplain width was the most important factor for determining side channel presence. We estimated a current CRB-wide decrease in side channel habitat area of 26% from historical conditions. Reconnection of historical floodplains currently used for agriculture could increase side channel habitat by 25% and spring Chinook salmon parr total rearing capacity by 9% over current estimates. Individual watersheds vary greatly in habitat factors that limit salmon recovery, and large-scale estimates of restoration potential like these are needed to make decisions about long-term restoration goals among imperiled populations.


2014 ◽  
Vol 71 (10) ◽  
pp. 1554-1560 ◽  
Author(s):  
Taylor L. Hunt ◽  
Khageswor Giri ◽  
Paul Brown ◽  
Brett A. Ingram ◽  
Paul L. Jones ◽  
...  

Density-dependent processes resulting from fish stocking were demonstrated to have a significant impact on recreational fishery performance, and this case study will be of use to guide fish stocking decisions in other fisheries. We evaluated a put-grow-and-take lake fishery stocking program for Chinook salmon (Oncorhynchus tshawytscha) located in south-western Victoria, Australia. We hypothesised that recreational fishery performance would show significant density-dependent relationships with fish stocking. To test this hypothesis, we used Wald F tests in a general linear regression model to evaluate relationships between a long-term historical fish stocking program and fishery performance, including angler and net catch rates and weight, length, and condition of caught fish. Our results yielded (i) significant positive relationships between angler and net catch rate of Chinook salmon with the number of Chinook salmon stocked in the same year and (ii) significant negative relationships between the weight of angler-caught Chinook salmon with both the number of Chinook salmon stocked in the same year and total number of fish stocked (apart from Chinook salmon) over the previous three year period.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0244470
Author(s):  
Richard B. Lanman ◽  
Linda Hylkema ◽  
Cristie M. Boone ◽  
Brian Allée ◽  
Roger O. Castillo ◽  
...  

Understanding a species’ historic range guides contemporary management and habitat restoration. Chinook salmon (Oncorhynchus tshawytscha) are an important commercial and recreational gamefish, but nine Chinook subspecies are federally threatened or endangered due to anthropogenic impacts. Several San Francisco Bay Area streams and rivers currently host spawning Chinook populations, but government agencies consider these non-native hatchery strays. Through the morphology-based analysis of 17,288 fish specimens excavated from Native American middens at Mission Santa Clara (CA-SCL-30H), Santa Clara County, circa 1781–1834 CE, 88 salmonid vertebrae were identified. Ancient DNA sequencing identified three separate individuals as Chinook salmon and the remainder as steelhead/rainbow trout (Oncorhynchus mykiss). These findings comprise the first physical evidence of the nativity of salmon to the Guadalupe River in San Jose, California, extending their documented historic range to include San Francisco Bay’s southernmost tributary watershed.


Sign in / Sign up

Export Citation Format

Share Document