Benthic algal biomass — measurement and errorsThis paper is part of the series “Forty Years of Aquatic Research at the Experimental Lakes Area”.

2009 ◽  
Vol 66 (11) ◽  
pp. 1989-2001 ◽  
Author(s):  
Helen M. Baulch ◽  
Michael A. Turner ◽  
David L. Findlay ◽  
Rolf D. Vinebrooke ◽  
William F. Donahue

While benthic algal biomass is one of the most commonly measured variables within littoral communities, it is also one of the most poorly characterized. The use of chlorophyll a as an estimate of biomass, while easy and inexpensive, can be affected by changes in environmental conditions and algal community composition. Biovolume-based measurements often have high variability and are affected by changes in cell volume due to preservation. Using 12 years of data from the Experimental Lakes Area (northwestern Ontario, Canada) as well as short-term surveys and experimental studies from the Experimental Lakes Area and the Canadian Rocky Mountains, we demonstrate that biovolume and chlorophyll a are often decoupled in the littoral zone of temperate oligotrophic lakes. We recommend that researchers revisit the limitations of both metrics and specifically caution against the use of chlorophyll a as a biomass indicator when light, temperature, or species composition vary significantly.

1994 ◽  
Vol 51 (12) ◽  
pp. 2739-2755 ◽  
Author(s):  
P. Campbell

A comparative mass-balance approach is used to describe and quantify phosphorus (P) cycles during the open-water season in two unmanipulated Experimental Lakes Area (ELA) lakes. A bimodal cycle generally prevailed, in which water-column total phosphorus (TP = total dissolved P plus sestonic particulate P) peaked just after ice-out and again late in the summer. Changes in mass of water-column TP were often much larger than corresponding net external inputs. Shifts of P to and from either zooplankton or fish in the water column do not explain the P residuals. Rather, the bottom sediments must have been adding P to the water column. Short-term regeneration of P from the bottom sediments also probably occurs in artificially eutrophied ELA lakes. The mechanism of regeneration is probably biological. Other aspects of P cycling and P stoichiometry are discussed, particularly in relation to nutrient control of population structure and the function of primary and secondary producers.


1971 ◽  
Vol 28 (2) ◽  
pp. 203-213 ◽  
Author(s):  
Mitsuru Sakamoto

In short-term experiments (6 hr–3 days) the general order of decreasing importance of nutrients added individually to samples of lake water and contained phytoplankton was inorganic carbon, Fe, P, and N. The comparable order for long-term experiments (8–20 days) was P, Fe, N; or P, N, Fe. No relation was found between concentrations of chlorophyll and inorganic carbon in the lakes. The addition of iron and trace elements in chelated form and chelators (HEDTA, NTA) alone, increased photosynthetic carbon uptake. The deficiency of iron was mostly due to a lack of iron in a readily assimilable form.


Author(s):  
Oleksii Timkov ◽  
Dmytro Yashchenko ◽  
Volodymyr Bosenko

The article deals with the development of a physical model of a car equipped with measuring, recording and remote control equipment for experimental study of car properties. A detailed description of the design of the physical model and of the electronic modules used is given, links to application libraries and the code of the first part of the program for remote control of the model are given. Atmega microcontroller on the Arduino Uno platform was used to manage the model and register the parameters. When moving the car on the memory card saved such parameters as speed, voltage on the motor, current on the motor, the angle of the steered wheel, acceleration along three coordinate axes are recorded. Use of more powerful microcontrollers will allow to expand the list of the registered parameters of movement of the car. It is possible to measure the forces acting on the elements of the car and other parameters. In the future, it is planned to develop a mathematical model of motion of the car and check its adequacy in conducting experimental studies on maneuverability on the physical model. In addition, it is possible to conduct studies of stability and consumption of electrical energy. The physical model allows to quickly change geometric dimensions and mass parameters. In the study of highway trains, this approach will allow to investigate the various layout schemes of highway trains in the short term. It is possible to make two-axle road trains and saddle towed trains, three-way hitched trains of different layout. The results obtained will allow us to improve not only the mathematical model, but also the experimental physical model, and move on to further study the properties of hybrid road trains with an active trailer link. This approach allows to reduce material and time costs when researching the properties of cars and road trains. Keywords: car, physical model, experiment, road trains, sensor, remote control, maneuverability, stability.


2019 ◽  
Author(s):  
Majid Manoochehri

Memory span in humans has been intensely studied for more than a century. In spite of the critical role of memory span in our cognitive system, which intensifies the importance of fundamental determinants of its evolution, few studies have investigated it by taking an evolutionary approach. Overall, we know hardly anything about the evolution of memory components. In the present study, I briefly review the experimental studies of memory span in humans and non-human animals and shortly discuss some of the relevant evolutionary hypotheses.


1987 ◽  
Vol 44 (12) ◽  
pp. 2155-2163 ◽  
Author(s):  
I. M. Gray

Differences between nearshore and offshore phytoplankton biomass and composition were evident in Lake Ontario in 1982. Phytoplankton biomass was characterized by multiple peaks which ranged over three orders of magnitude. Perhaps as a consequence of the three times higher current velocities at the northshore station, phytoplankton biomass ranged from 0.09 to 9.00 g∙m−3 compared with 0.10 to 2.40 g∙m−3 for the midlake station. Bacillariophyceae was the dominant group at the northshore station until September when Cyanophyta contributed most to the biomass (83%). Although Bacillariophyceae was the principal component of the spring phytoplankton community at the midlake station, phytoflagellates (49%) and Chlorophyceae (25%) were responsible for summer biomass, with the Chlorophyceae expanding to 80% in the fall. The seasonal pattern of epilimnetic chlorophyll a correlated with temperature. While chlorophyll a concentrations were similar to values from 1970 and 1972, algal biomass had declined and a number of eutrophic species (Melosira binderana, Stephanodiscus tenuis, S. hantzschii var. pusilla, and S. alpinus) previously found were absent in 1982.


1993 ◽  
Vol 23 (6) ◽  
pp. 1213-1222 ◽  
Author(s):  
E.A. Johnson ◽  
D.R. Wowchuk

In this paper we present evidence for a large-scale (synoptic-scale) meteorological mechanism controlling the fire frequency in the southern Canadian Rocky Mountains. This large-scale control may explain the similarity in average fire frequencies and timing of change in average fire frequencies for the southern Canadian Rocky Mountains. Over the last 86 years the size distribution of fires (annual area burned) in the southern Canadian Rockies was distinctly bimodal, with a separation between small- and large-fire years at approximately 10–25 ha annual area burned. During the last 35 years, large-fire years had significantly lower fuel moisture conditions and many mid-tropospheric surface-blocking events (high-pressure upper level ridges) during July and August (the period of greatest fire activity). Small-fire years in this period exhibited significantly higher fuel moisture conditions and fewer persistent mid-tropospheric surface-blocking events during July and August. Mid-tropospheric surface-blocking events during large-fire years were teleconnected (spatially and temporally correlated in 50 kPa heights) to upper level troughs in the North Pacific and eastern North America. This relationship takes the form of the positive mode of the Pacific North America pattern.


1903 ◽  
Vol 21 (6) ◽  
pp. 685
Author(s):  
J. Norman Collie

1997 ◽  
Vol 54 (6) ◽  
pp. 1299-1305 ◽  
Author(s):  
Robert France

The purpose of the present study was to determine if riparian deforestation would expose lake surfaces to stronger winds and therefore bring about deepening of thermoclines and resulting habitat losses for cold stenotherms such as lake trout (Salvelinus namaycush). Removal of protective riparian trees through wind blowdown and two wildfires was found to triple the overwater windspeeds and produce thermocline deepening in two lakes at the Experimental Lakes Area. A survey of thermal stratification patterns in 63 northwestern Ontario lakes showed that lakes around which riparian trees had been removed a decade before through either clearcutting or by a wildfire were found to have thermocline depths over 2 m deeper per unit fetch length compared with lakes surrounded by mature forests. Riparian tree removal will therefore exacerbate hypolimnion habitat losses for cold stenotherms that have already been documented to be occurring as a result of lake acidification, eutrophication, and climate warming.


2016 ◽  
Vol 25 (11) ◽  
pp. 1117 ◽  
Author(s):  
Marie-Pierre Rogeau ◽  
Mike D. Flannigan ◽  
Brad C. Hawkes ◽  
Marc-André Parisien ◽  
Rick Arthur

Like many fire-adapted ecosystems, decades of fire exclusion policy in the Rocky Mountains and Foothills natural regions of southern Alberta, Canada are raising concern over the loss of ecological integrity. Departure from historical conditions is evaluated using median fire return intervals (MdFRI) based on fire history data from the Subalpine (SUB), Montane (MT) and Upper Foothills (UF) natural subregions. Fire severity, seasonality and cause are also documented. Pre-1948 MdFRI ranged between 65 and 85 years in SUB, between 26 and 35 years in MT and was 39 years in UF. The fire exclusion era resulted in a critical departure of 197–223% in MT (MdFRI = 84–104 years). The departure in UF was 170% (MdFRI = 104 years), while regions of continuous fuels in SUB were departed by 129% (MdFRI = 149 years). The most rugged region of SUB is within its historical range of variation with a departure of 42% (MdFRI = 121 years). More mixed-severity burning took place in MT and UF. SUB and MT are in a lightning shadow pointing to a predominance of anthropogenic burning. A summer fire season prevails in SUB, but occurs from spring to fall elsewhere. These findings will assist in developing fire and forest management policies and adaptive strategies in the future.


2010 ◽  
Vol 67 (8) ◽  
pp. 1291-1302 ◽  
Author(s):  
Helder Cunha Pereira ◽  
Norman Allott ◽  
Catherine Coxon

This paper compares, for the first time, nutrient levels and chlorophyll a measured in a set of seasonal lakes with those reported for permanent lakes in the literature. Twenty-two turloughs (karstic seasonal lakes) in western Ireland were sampled monthly from the onset of flooding (October) until they dried out (6 to 9 months). The turloughs showed similar levels of nutrients and chlorophyll a to those reported for Irish and international lakes. Chlorophyll a peaked between November and February in the majority of turloughs, sometimes with values higher than those measured in mesotrophic lakes in summer. A significant log-linear regression was found between total phosphorus and chlorophyll a, which suggests P limitation of algal biomass in the majority of the turloughs. The regression characteristics were not significantly different than those described in similar studies of permanent lakes. Patterns in seasonal variation of nutrients are also presented, their underlying causes being discussed in relation to their transport within catchments. Our results show that despite being predominantly winter phenomena, turloughs can be as productive as permanent lakes.


Sign in / Sign up

Export Citation Format

Share Document