The Relation Between Lobster Abundance, Sea Urchins, and Kelp Beds

1972 ◽  
Vol 29 (5) ◽  
pp. 603-605 ◽  
Author(s):  
K. H. Mann ◽  
P. A. Breen

When subtidal communities are disturbed and sea urchin populations expand, they frequently overgraze their food supply, eliminating large seaweeds from considerable areas. The hypothesis is advanced that the lobster is a key species, controlling sea urchin populations in eastern Canada, and that reduction of lobster populations below a critical density has led to overgrazing of seaweeds in many places.

1976 ◽  
Vol 33 (6) ◽  
pp. 1278-1283 ◽  
Author(s):  
P. A. Breen ◽  
K. H. Mann

Destruction of kelp beds by sea urchins has been documented in St. Margaret’s Bay, Nova Scotia, and also appears to be taking place in other parts of eastern Canada. Continued sea urchin settlement onto grazed areas prevents the return of kelp and other algae for long periods. Because of the large contribution of kelp beds to coastal productivity, the disappearance of kelp from large areas is alarming. Dynamics of sea urchin grazing are discussed.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jordi F. Pagès ◽  
Frederic Bartumeus ◽  
Javier Romero ◽  
Teresa Alcoverro

Abstract Background Classic ecological formulations of predator–prey interactions often assume that predators and prey interact randomly in an information-limited environment. In the field, however, most prey can accurately assess predation risk by sensing predator chemical cues, which typically trigger some form of escape response to reduce the probability of capture. Here, we explore under laboratory-controlled conditions the long-term (minutes to hours) escaping response of the sea urchin Paracentrotus lividus, a key species in Mediterranean subtidal macrophyte communities. Methods Behavioural experiments involved exposing a random sample of P. lividus to either one of two treatments: (i) control water (filtered seawater) or (ii) predator-conditioned water (with cues from the main P. lividus benthic predator—the gastropod Hexaplex trunculus). We analysed individual sea urchin trajectories, computed their heading angles, speed, path straightness, diffusive properties, and directional entropy (as a measure of path unpredictability). To account for the full picture of escaping strategies, we followed not only the first instants post-predator exposure, but also the entire escape trajectory. We then used linear models to compare the observed results from control and predators treatments. Results The trajectories from sea urchins subjected to predator cues were, on average, straighter and faster than those coming from controls, which translated into differences in the diffusive properties and unpredictability of their movement patterns. Sea urchins in control trials showed complex diffusive properties in an information-limited environment, with highly variable trajectories, ranging from Brownian motion to superdiffusion, and even marginal ballistic motion. In predator cue treatments, variability reduced, and trajectories became more homogeneous and predictable at the edge of ballistic motion. Conclusions Despite their old evolutionary origin, lack of cephalization, and homogenous external appearance, the trajectories that sea urchins displayed in information-limited environments were complex and ranged widely between individuals. Such variable behavioural repertoire appeared to be intrinsic to the species and emerged when the animals were left unconstrained. Our results highlight that fear from predators can be an important driver of sea urchin movement patterns. All in all, the observation of anomalous diffusion, highly variable trajectories and the behavioural shift induced by predator cues, further highlight that the functional forms currently used in classical predator–prey models are far from realistic.


2017 ◽  
Vol 284 (1866) ◽  
pp. 20171440 ◽  
Author(s):  
Arie J. P. Spyksma ◽  
Nick T. Shears ◽  
Richard B. Taylor

Many prey species induce defences in direct response to predation cues. However, prey defences could also be enhanced by predators indirectly via mechanisms that increase resource availability to prey, e.g. trophic cascades. We evaluated the relative impacts of these direct and indirect effects on the mechanical strength of the New Zealand sea urchin Evechinus chloroticus . We measured crush-resistance of sea urchin tests (skeletons) in (i) two marine reserves, where predators of sea urchins are relatively common and have initiated a trophic cascade resulting in abundant food for surviving urchins in the form of kelp, and (ii) two adjacent fished areas where predators and kelps are rare. Sea urchins inhabiting protected rocky reefs with abundant predators and food had more crush-resistant tests than individuals on nearby fished reefs where predators and food were relatively rare. A six-month long mesocosm experiment showed that while both food supply and predator cues increased crush-resistance, the positive effect of food supply on crush-resistance was greater. Our results demonstrate a novel mechanism whereby a putative morphological defence in a prey species is indirectly strengthened by predators via cascading predator effects on resource availability. This potentially represents an important mechanism that promotes prey persistence in the presence of predators.


2021 ◽  
Author(s):  
Jonathan Hira ◽  
Klara Stensvåg

Abstract “Sea urchin lesion syndrome” is known as sea urchins disease with the progressive development of necrotic epidermal tissue and loss of external organs, including appendages on the outer body surface. Recently, a novel strain, Vibrio echinoideorum has been isolated from the lesions of green sea urchin (Strongylocentrotus droebachiensis), an economically important mariculture species in Norway. V. echinoideorum has not been reported elsewhere in association of with green sea urchin lesion syndrome. Therefore, in this study, an immersion based bacterial challenge experiment was performed to expose sea urchins (wounded and non-wounded) to V. echinoideorum, thereby mimicking a nearly natural host-pathogen interaction under controlled conditions. This infection experiment demonstrated that only the injured sea urchins developed the lesion to a significant degree when exposed to V. echinoideorum. Pure cultures of the employed bacterial strain was recovered from the infected animals and its identity was confirmed by the MALDI-TOF MS spectra profiling. Additionally, the hemolytic phenotype of V. echinoideorum substantiated its virulence potential towards the host, and this was also supported by the cytolytic effect on red spherule cells of sea urchins. Furthermore, the genome sequence of V. echinoideorum was assumed to encode potential virulence genes and were subjected for in silico comparison with the established virulence factors of Vibrio vulnificus and Vibrio tasmaniensis. This comparative virulence profile provided novel insights about virulence genes and their putative functions related to chemotaxis, adherence, invasion, evasion of the host immune system, and damage of host tissue and cells. Thus, it supports the pathogenicity of V. echinoideorum. In conclusion, the interaction of V. echinoideorum with injured sea urchins appears to be essential for the development of lesion syndrome and therefore, revealing its potentiality as an opportunistic pathogen.


Author(s):  
J.A. Baeza ◽  
M. Thiel

The porcellanid crab Liopetrolisthes mitra is a common associate of the black sea urchin, Tetrapygus niger in north central Chile. The host-use pattern, population dynamics and reproductive pattern of L. mitra on sea urchins were examined between January 1996 and February 1997. Each month, between 60 and 95 per cent of all collected urchins hosted crabs, with the highest frequency of cohabitation occurring during the austral summer (January to March). Group sizes of crabs on individual urchins ranged from 1 to 25 crabs per host. The average density of crabs on the urchins ranged from 2 to 5.5 crabs per host. Large urchins were inhabited by crabs more frequently than small urchins but urchin size had no effect on the number or size of crabs. The sex ratio of adult crabs was ˜1:1 during most months. Reproduction occurred throughout the year but was most intense during the austral spring and summer (October to March), when the highest percentage of ovigerous females were found. Similarly, recruitment of L. mitra occurred throughout the year but reached a peak during austral summer and early autumn (January to May). All life stages of L. mitra including recently settled megalopae and reproductive adults were found on urchins. Size–frequency analysis indicated that many crabs live >1.5 years. The results of this study confirm that the association between L. mitra and T. niger is strong and persists throughout the benthic life of the commensal crab.


2020 ◽  
pp. 871-871
Author(s):  
R. E. Scheibling ◽  
A. W. Hennigar ◽  
T. Balch
Keyword(s):  

2014 ◽  
Author(s):  
Matthew C Foster ◽  
Jarrett E Byrnes ◽  
Daniel C Reed

Consumer growth and reproductive capacity are direct functions of diet. Strongylocentrotid sea urchins, the dominant herbivores in California kelp forests, strongly prefer giant kelp (Macrocystis pyrifera), but are highly catholic in their ability to consume other species. The biomass of Macrocystis fluctuates greatly in space and time and the extent to which urchins can use alternate species of algae or a mixed diet of multiple algal species to maintain fitness when giant kelp is unavailable is unknown. We experimentally examined the effects of single and mixed species diets on consumption, growth and gonad weight in the purple sea urchin Strongylocentrotus purpuratus. Urchins were fed single species diets consisting of one of four common species of macroalgae (the kelps Macrocystis pyrifera and Pterygophora californica, and the red algae Chondracanthus corymbiferus and Rhodymenia californica (hereafter referred to by genus) or a mixed diet containing all four species ad libitum over a 13-week period in a controlled laboratory setting. Urchins fed Chondracanthus, Macrocystis and a mixed diet showed the highest growth (in terms of test diameter, wet weight and jaw length) and gonad weight while urchins fed Pterygophora and Rhodymenia showed the lowest. Urchins consumed their preferred food, Macrocystis at the highest rate when offered a mixture, but consumed Chondracanthus or Macrocystis at similar rates when the two algae were offered alone. The differences in urchin feeding behavior and growth observed between these diet types suggest the relative availability of the algae tested here could affect urchin populations and their interactions with the algal assemblage. The fact that the performance of urchins fed Chondracanthus was similar or higher than those fed the preferred Macrocystis suggests purple sea urchins could sustain growth and reproduction during times of low Macrocystis abundance as is common following large wave events.


2014 ◽  
Vol 15 (3) ◽  
pp. 475 ◽  
Author(s):  
S. GARCIA-SANZ ◽  
P. G. NAVARRO ◽  
F. TUYA

Despite sea-urchins can play an important role affecting the community structure of subtidal bottoms, factors controlling the dynamics of sea-urchin populations are still poorly understood. We assessed the seasonal variation in recruitment of three sea-urchin species (Diadema africanum, Paracentrotus lividus and Arbacia lixula) at Gran Canaria Island (eastern Atlantic) via monthly deployment of artificial collectors throughout an entire annual cycle on each of four adjacent habitat patches (seagrasses, sandy patches, ‘urchin-grazed’ barrens and macroalgal-dominated beds) within a shallow coastal landscape. Paracentrotus lividus and A. lixula had exclusively one main recruitment peak in late winter-spring. Diadema africanum recruitment was also seasonal, but recruits appeared in late summer-autumn, particularly on ‘urchin-grazed’ barrens with large abundances of adult conspecifics. In conclusion, this study has demonstrated non-overlapping seasonal recruitment patterns of the less abundant species (P. lividus and A. lixula) with the most conspicuous species (D. africanum) in the study area.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Periklis Paganos ◽  
Danila Voronov ◽  
Jacob M Musser ◽  
Detlev Arendt ◽  
Maria Ina Arnone

Identifying the molecular fingerprint of organismal cell types is key for understanding their function and evolution. Here, we use single cell RNA sequencing (scRNA-seq) to survey the cell types of the sea urchin early pluteus larva, representing an important developmental transition from non-feeding to feeding larva. We identify 21 distinct cell clusters, representing cells of the digestive, skeletal, immune, and nervous systems. Further subclustering of these reveal a highly detailed portrait of cell diversity across the larva, including the identification of neuronal cell types. We then validate important gene regulatory networks driving sea urchin development and reveal new domains of activity within the larval body. Focusing on neurons that co-express Pdx-1 and Brn1/2/4, we identify an unprecedented number of genes shared by this population of neurons in sea urchin and vertebrate endocrine pancreatic cells. Using differential expression results from Pdx-1 knockdown experiments, we show that Pdx1 is necessary for the acquisition of the neuronal identity of these cells. We hypothesize that a network similar to the one orchestrated by Pdx1 in the sea urchin neurons was active in an ancestral cell type and then inherited by neuronal and pancreatic developmental lineages in sea urchins and vertebrates.


Sign in / Sign up

Export Citation Format

Share Document