Management Implications for Different Genetic Stocks of Largemouth Bass (Micropterus salmoides) in the United States

1981 ◽  
Vol 38 (12) ◽  
pp. 1715-1723 ◽  
Author(s):  
David P. Philipp ◽  
William F. Childers ◽  
Gregory S. Whitt

Genetic differences exist among 90 largemouth bass (Micropterus salmoides) populations from different geographic regions of the United States. Genetic variation at 28 loci was determined through the use of vertical starch gel electrophoretic analyses. Allelic polymorphism was observed at 16 of these loci. Marked differences in allele frequencies at six of these loci exist among the populations. Distinct north–south clinal distributions of the alleles at the MDH-B, SOD-A, IDH-B, and AAT-B loci suggest a possible involvement of the associated enzymes in the thermal tolerance/preference limits for this species.We conclude that one or more of these enzymes may be directly involved in temperature tolerance/preference or indirectly associated with temperature-related effects. In either instance, selection (if occurring) may be acting upon the enzyme locus or genes closely linked to it. Through a combination of ecological and genetic principles, it is becoming increasingly feasible to select or construct specific populations of marine or freshwater fish optimally suited for specific environments. Fisheries management programs would benefit from the application of these principles. Multidisciplinary approaches of this nature are essential to maximize the successful conservation and management of our natural resources.Key words: largemouth bass, allele, loci, polymorphism, selection, population

2018 ◽  
Vol 94 ◽  
Author(s):  
M. García-Varela ◽  
C.D. Pinacho-Pinacho

AbstractMembers of the genusNeoechinorhynchusStiles & Hassall, 1905 are endoparasites of freshwater fishes, brackish water fishes, and freshwater turtles distributed worldwide. In North America, 33 species have been described. One of the most widely distributed species in the eastern United States and Canada isNeoechinorhynchus (Neoechinorhynchus) cylindratus,a common acanthocephalan that infects centrarchid fishes. In the current study, adult specimens ofN. (N) cylindratuswere collected from largemouth bass (Micropterus salmoides) from the Purificación River in northern Mexico. In the same freshwater system, two additional congeneric species (Neoechinorhynchus (Neoechinorhynchus) emyditoidesandNeoechinorhynchus (Neoechinorhynchus) panucensis) were collected and analysed. Sequences of the large subunit, internal transcribed spacers ITS1 and ITS2, 5.8S from nuclear DNA, and sequences of the cytochromecoxidase subunit I (cox1) from mitochondrial DNA were generated and aligned with other sequences obtained from GenBank. Maximum likelihood and Bayesian inference analyses inferred for each dataset showed thatN. (N) panucensis,N. (N) emyditoidesandN. (N) cylindratuswere nested within several clades, indicating that these species do not share a common ancestor. Our phylogenies also revealed that the genusNeoechinorhynchusis paraphyletic, requiring further taxonomic revision using phylogenetic systematics and re-examination of morphological and ecological data. The presence of severalN. (N) cylindratusadults in northern Mexico allowed us to typify this species for the first time using a combination of morphological and molecular characteristics. The current record shows a wide distribution range ofN. (N) cylindratusacross Canada, the United States and Mexico in the Nearctic region.


<em>Abstract</em>.—Thirteen United States fishery agencies utilized routine supplemental stocking as a means to manage largemouth bass <em>Micropterus salmoides </em>populations in large (>405-ha) reservoirs. State agencies stocking largemouth bass used two strains (i.e., northern and Florida) as well as intergrades. Largemouth bass for stocking were raised in hatcheries, lakeside nursery ponds, or both. Among states, methods used to monitor fish in hatchery ponds and lakeside nursery ponds, the date ponds were drained, and methods to enumerate fish from the ponds varied. Although most states cited bolstering weak year-classes as their main reason for routine stocking, others noted increasing genetic variability within populations and public pressure as reasons that their agencies stocked large reservoirs with largemouth bass. As agencies continue to respond to public pressures for larger fish, they should consider the possible consequences of mixing stocks of largemouth bass. With continued development of agency rearing techniques, especially in lakeside nursery ponds, methods to enumerate fish should be considered to aid in future stocking evaluations. Improved rearing and stocking techniques will allow fisheries managers to utilize resource dollars in a way that provides benefit to anglers while ensuring the sustainability of largemouth bass populations.


2021 ◽  
Vol 21 ◽  
pp. 100845
Author(s):  
Leticia E. Fantini ◽  
Matthew A. Smith ◽  
Michele Jones ◽  
Luke A. Roy ◽  
Rebecca Lochmann ◽  
...  

Author(s):  
Summer Lindelien ◽  
Andrew C. Dutterer ◽  
Paul Schueller ◽  
Chris C. Anderson

Largemouth Bass Micropterus salmoides, Florida Bass M. floridanus, and their intergrade are socially and economically valuable sport fish. In the southeastern United States, it is customary to age black bass (Micropterus) spp. using sagittal otoliths which requires killing the fish. Presently, fisheries managers and black bass anglers show reluctance to sacrifice large individuals. Development of a nonlethal ageing technique would not only allay concerns of sacrificing large black bass, but it could offer a pathway for new research, management, and conservation. We excised dorsal spines III–V from Largemouth Bass in Florida varying from 30–57 cm total length to evaluate the effects of the procedure on survival over 35 days. No mortalities were observed for fish with excised dorsal spines, and experiment-wide survival was 0.94 (0.87–1.00; 95% confidence interval). No significant differences in survival, weight change, or incidence of external injuries were observed between control and excised fish. The areas of spine excision healed with no visible infection or inflammation at the conclusion of the experiment. Therefore, dorsal spine removal offers managers a nonlethal option for collecting ageing structures of adult Largemouth Bass in Florida, including large individuals, and this result likely extends to other Micropterus spp. as well.


2017 ◽  
Vol 8 (1) ◽  
pp. 140-153 ◽  
Author(s):  
Joseph W. Love ◽  
Mary Groves ◽  
Branson D. Williams

Abstract Largemouth Bass Micropterus salmoides is arguably the most popular sport fish of inland waters in the United States. The majority of anglers in the fishery practice catch and release. Catch-and-release guidelines aim to reduce negative impacts of angling on individual fish, though such impacts on populations are not widely reported. We hypothesized that a decline in the population size for Largemouth Bass from a catch-and-release fishery from the Potomac River resulted from a period of greater fishing mortality followed by habitat loss that reduced the recovery of the population. After we analyzed several years of fishery-dependent and independent data (1999–2015), it was determined that fishing mortality and relative exploitation were greater than average in the latter half of the 2000s than in previous years. Fishery-independent survey results suggested a loss of large fish and decline in population size. The relative abundance of juveniles subsequently declined possibly because the area of submerged aquatic vegetation used as nursery habitat had declined after tropical storms. For management purposes, we suggest that fishing mortality not exceed 28% for a sustainable fishery (assuming similar levels of natural mortality) in the Potomac River. Negative impacts to Largemouth Bass populations could be lessened by reduced harvest and widespread enforcement of catch-and-release guidelines, especially during times when angler effort is high, fish are highly accessible to anglers in the fishery, and habitat loss limits recruitment.


<em>Abstract</em>.—Largemouth Bass (LMB) <em>Micropterus salmoides</em> is one of the most popular sport fish in the United States and is intensively managed across much of its range. Beginning in 1989, Wisconsin implemented more restrictive harvest regulations for LMB, including greater minimum length limits, reduced bag limits, and a catch-and-release-only season during the spawning period across much of northern Wisconsin. We tested for trends in LMB relative abundance, growth, and angler catch and harvest in relation to LMB management policies from 1990 to 2011. We also tested for potential sport fish community responses to changes in LMB abundances using Walleye (WAE) <em>Sander vitreus</em> as an example. Angler catch rates and electrofishing catch per unit effort of LMB greater than 8 and 14 in increased significantly statewide. Mean length of age-6 LMB decreased significantly statewide. Release rates of LMB increased from about 80% in 1991 and then plateaued at more than 96% from 2005 to 2011. Concurrent with increases in LMB, adult WAE densities declined in lakes containing LMB. Ongoing research is being conducted to test for interactions between LMB and WAE and to test for additional environmental drivers, such as climate warming, that may be associated with increased LMB abundances. Largemouth Bass abundances have increased in Wisconsin, possibly in response to changes in harvest regulations, angler behavior, and potentially other environmental drivers. These increases in LMB abundances have had negative intraspecific effects on growth and may be negatively affecting WAE stocks. We recommend that management goals for LMB consider intra- and interspecific consequences, particularly in water bodies where multispecies fisheries are desired.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Dan Wang ◽  
Hong Yao ◽  
Yan-He Li ◽  
Yong-Jiang Xu ◽  
Xu-Fa Ma ◽  
...  

Abstract Although largemouth bass Micropterus salmoides has shown its extremely economic, ecological, and aquacultural significances throughout the North American and Asian continents, systematic evaluation of genetic variation and structure of wild and cultured populations of the species is yet to be documented. In this study, we investigated the genetic structure of M. salmoides from 20 wild populations and five cultured stocks across the United States and China using eight microsatellite loci, which are standard genetic markers for population genetic analysis. Our major findings are as follows: (1) the result of Fst showed largemouth bass had high genetic differentiation, and the gene flow indicated the genetic exchange among wild populations is difficult; (2) AMOVA showed that 14.05% of the variation was among populations, and 85.95% of the variation was within populations; (3) The majority of largemouth bass populations had a significant heterozygosity excess, which is likely to indicate a previous population bottleneck; (4) Allelic richness was lower among cultured populations than among wild populations; (5) Effective population size in hatcheries could promote high levels of genetic variation among individuals and minimize loss of genetic diversity; China’s largemouth bass originated from northern largemouth bass of USA. The information provides valuable basis for development of appropriate conservation policies for fisheries and aquaculture genetic breeding programs in largemouth bass.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ahmad H. Sallam ◽  
Kevin P. Smith ◽  
Gongshe Hu ◽  
Jamie Sherman ◽  
Peter Stephen Baenziger ◽  
...  

Climate changes leading to higher summer temperatures can adversely affect cool season crops like spring barley. In the Upper Midwest region of the United States, one option for escaping this stress factor is to plant winter or facultative type cultivars in the autumn and then harvest in early summer before the onset of high-temperature stress. However, the major challenge in breeding such cultivars is incorporating sufficient winter hardiness to survive the extremely low temperatures that commonly occur in this production region. To broaden the genetic base for winter hardiness in the University of Minnesota breeding program, 2,214 accessions from the N. I. Vavilov Institute of Plant Industry (VIR) were evaluated for winter survival (WS) in St. Paul, Minnesota. From this field trial, 267 (&gt;12%) accessions survived [designated as the VIR-low-temperature tolerant (LTT) panel] and were subsequently evaluated for WS across six northern and central Great Plains states. The VIR-LTT panel was genotyped with the Illumina 9K SNP chip, and then a genome-wide association study was performed on seven WS datasets. Twelve significant associations for WS were identified, including the previously reported frost resistance gene FR-H2 as well as several novel ones. Multi-allelic haplotype analysis revealed the most favorable alleles for WS in the VIR-LTT panel as well as another recently studied panel (CAP-LTT). Seventy-eight accessions from the VIR-LTT panel exhibited a high and consistent level of WS and select ones are being used in winter barley breeding programs in the United States and in a multiparent population.


Sign in / Sign up

Export Citation Format

Share Document