Physiological Evidence of Acclimation to Acid/Aluminum Stress in Adult Brook Trout (Salvelinus fontinalis). 1. Blood Composition and Net Sodium Fluxes

1988 ◽  
Vol 45 (9) ◽  
pp. 1587-1596 ◽  
Author(s):  
C. M. Wood ◽  
D. G. McDonald ◽  
C. E. Booth ◽  
B. P. Simons ◽  
C. G. Ingersoll ◽  
...  

Brook trout (Salvelinus fontinalis) adapt to chronic sublethal acid/Al stress. The accompanying acclimation confers greater resistance to short-term increases in Al and acidity. Adult trout were exposed in flowing soft water to eight combinations of pH (6.5, 5.2) × Ca2+ (25, 400 μequiv/L) × Al (0, 75, 150 μg/L = 0, 2.8, 5.6 μmol/L). After 10 wk, blood sampling by caudal puncture revealed no significant variations in osmolality, plasma protein, or hemoglobin and only minor differences [Formula: see text] in plasma Na+ and Cl−. Overall, most electrolytes were higher in fish exposed to higher water Al and/or Ca2+; only plasma Ca2+ was directly depressed by low pH. Hematocrit was raised by both low pH and elevated Al. When trout naive to both acid and Al were challenged with pH = 4.8, Al = 333 μg/L under flow-through conditions, there were large negative whole-body Na+ fluxes and marked depressions of plasma Na+ and Cl−, hemoconcentration, and substantial mortality over 48 h. Prior exposure for 10 wk to pH = 5.2 plus either 75 or 150 μg Al/L prevented mortality and ameliorated or abolished these effects through a more rapid recovery of net Na+ balance. Prior exposure to pH = 5.2 alone ameliorated these effects only slightly.


1975 ◽  
Vol 32 (5) ◽  
pp. 609-613 ◽  
Author(s):  
Paul M. Mehrle ◽  
Foster L. Mayer Jr.

Twenty-two days before hatching, eyed eggs of brook trout (Salvelinus fontinalis) were placed in a flow-through system and continuously exposed to toxaphene (0, 39, 68, 139, 288, and 502 ng/liter) until they hatched and the resulting fry were exposed for a further 90 days. Hatchability was not affected by toxaphene, but all of the fry exposed to 502 and 288 ng/liter of toxaphene died by 30 and 60 days after hatch, respectively. Growth of fry was significantly depressed at the 139 and 288 ng/liter concentrations 30 days after hatch and at all concentrations after 60 and 90 days of toxaphene exposure.Whole body collagen of fry, as estimated by hydroxyproline, was significantly decreased in the four higher concentrations of toxaphene within 7–15 days after hatch. Backbone collagen was significantly decreased (P < 0.05) in 30-, 60-, and 90-day-old fry exposed to toxaphene, whereas calcium and phosphorus concentrations in the backbone were increased (P < 0.05). The mineral: collagen ratio was significantly increased by toxaphene. The whole body collagen of sac-fry was a good predictor of later growth and development of brook trout.



1986 ◽  
Vol 43 (10) ◽  
pp. 2048-2050 ◽  
Author(s):  
W. H. Tam ◽  
P. D. Payson ◽  
R. J. J. Roy

Brook trout fry (Salvelinus fontinalis) were exposed to pH 4.66 for various durations up to 141 d and then returned to neutral water. Growth of test fish was in general significantly lower than that of control fish for exposures up to days 45–78. In four of six groups of acid-treated fish, growth eventually recovered and the growth rates were not different from that of control fish. The results suggested that growth inhibition was induced early in the exposure to sublethally low pH and that recovery in the latter phase of the experiment occurred whether pH remained acidic or was readjusted to neutral.



1973 ◽  
Vol 30 (12) ◽  
pp. 1811-1817 ◽  
Author(s):  
Roger O. Hermanutz ◽  
Leonard H. Mueller ◽  
Kenneth D. Kempfert

The toxic effects of captan on survival, growth, and reproduction of fathead minnows (Pimephales promelas) and on survival of bluegills (Lepomis macrochirus) and brook trout (Salvelinus fontinalis) were determined in a flow-through system. In a 45-week exposure of fathead minnows, survival and growth were adversely affected at 39.5 μg/liter. Adverse effects on spawning were suspected but not statistically demonstrated at 39.5 and 16.5 μg/liter. The maximum acceptable toxicant concentration (MATC), based on survival and growth, lies between 39.5 and 16.5 μg/liter. The lethal threshold concentration (LTC) derived from acute exposures was 64 μg/liter, resulting in an application factor (MATC/LTC) between 0.26 and 0.62. LTC values for the bluegill and brook trout were 72 and 29 μg/liter, respectively. The estimated MATC is between 44.6 and 18.7 μg/liter for the bluegill and between 18.0 and 7.5 μg/liter for the brook trout.The half-life of captan in Lake Superior water with a pH of 7.6 is about 7 hr at 12 C and about 1 hr at 25 C. Breakdown products from an initial 550 μg/liter of captan were not lethal to 3-month-old fathead minnows.



Toxin Reviews ◽  
2018 ◽  
Vol 39 (4) ◽  
pp. 355-360 ◽  
Author(s):  
Filiz Kutluyer ◽  
Mehmet Kocabaş ◽  
Nadir Başçınar


1984 ◽  
Vol 41 (12) ◽  
pp. 1774-1780 ◽  
Author(s):  
David W. Rodgers

Juvenile brook trout, Salvelinus fontinalis, were maintained in water of pH 5.3 or 6.5 and calcium concentrations of 5 or 40 mg/L to determine the effects of these factors on fish growth and calcium dynamics. Growth rates varied more than twofold and were significantly reduced by both low ambient calcium concentration and low pH. In contrast, calcium dynamics of the fish were significantly affected by calcium concentration but not pH. Brook trout in low-calcium water retained less labeled dietary calcium and deposited less labeled calcium in axial skeleton and visceral tissues than fish in high-calcium water. Calcium concentrations of the skin and fins were slightly but significantly reduced among fish in low-calcium water, but neither pH nor ambient calcium concentration significantly affected ash content or calcium concentration of axial skeleton and visceral tissues of experimental fish.



1988 ◽  
Vol 45 (9) ◽  
pp. 1563-1574 ◽  
Author(s):  
C. E. Booth ◽  
D. G. McDonald ◽  
B. P. Simons ◽  
C. M. Wood

Adult brook trout (Salvelinus fontinalis) were exposed for up to 11 d to one of a matrix of 18 Al, low pH, and Ca2+ combinations, chosen as representive of acidified softwater environments in the wild. Reduction in water pH led to pH-dependent net losses of Na+ and Cl− exacerbated by the presence of Al in the water and reduced by elevating Ca2+. Any animal losing more than 4% of its total body Na+ over the first 24 h of Al exposure had a greater than 90% likelihood of eventual mortality. Na+ losses arose from inhibition of influx and stimulation of efflux. The inhibition was persistent and pH dependent. Addition of Al to acidified water had a slight further inhibitory effect on Na+ influx and a large stimulatory effect on efflux. The latter was dependent on Al concentration, was the main cause of initial ion losses and mortality, and declined with time in surviving animals. All Al-exposed fish accumulated Al on their gills, but this was apparently mainly surface or subsurface bound, since no internal Al (plasma or liver) could be detected. Nonsurviving fish had substantially higher gill Al levels than survivors.



1990 ◽  
Vol 47 (8) ◽  
pp. 1593-1603 ◽  
Author(s):  
C. M. Wood ◽  
D. G. McDonald ◽  
C. G. Ingersoll ◽  
D. R. Mount ◽  
O. E. Johannsson ◽  
...  

Water Ca, rather than pH or Al, was the most important factor affecting whole body electrolyte levels in fry exposed from fertilization to swim-up (91 d) to 84 combinations of pH (6.5, 5.2, 4.8, 4.4, 4.0), Ca (0.5, 1, 2, 8 mg/L), and Al (0, 12, 37, 111, 333, 1000 μg/L) in flowing soft water. Aluminum accumulation occurred only at water Al levels > 111 μg/L; Al accumulation was inhibited both by increasing Ca and decreasing pH. Under control conditions (pH = 6.5, Ca = 2 mg/L, Al = 0 μg/L), whole body Na, Cl, K, and Ca levels all increased greatly during development, while Mg decreased. Body Ca levels were elevated up to 3-fold, and Na, Cl, and K up to 2-fold by increasing water Ca at the same pH and Al. Low pH had a small negative influence, intermediate levels of Al (37, 111) a slight positive influence, and higher levels of Al a negative influence on Na, Cl, K, and Ca levels. Whole body Mg showed opposite trends, reflecting delayed development under adverse conditions. At pH = 6.5, the positive influence of increasing water Ca on most whole body ions showed a clear threshold between 0.5 and 1 mg/L. At lower pH, this threshold was shifted to between 2 and 8 mg/L, indicating that Ca levels sufficient to support healthy development at circumneutral pH may prove inadequate under acidified conditions.



1993 ◽  
Vol 50 (8) ◽  
pp. 1717-1727 ◽  
Author(s):  
A. Hontela ◽  
J. B. Rasmussen ◽  
K. Lederis ◽  
H. V. Tra ◽  
G. Chevalier

The levels of arginine vasotocin (AVT), an osmoregulatory peptide, were determined by radioimmunoassay in brain tissue of brook trout (Salvelinus fontinalis) of a wide size range (50–380 mm) from softwater Laurentian lakes ranging in pH from 5.0 to 6.9 at different seasons. Multivariate models (ANCOVA) were developed to quantify the relationship between AVT, pH, body size, and season. Brain AVT levels increased with body size, and the allometric slope was highest in the low-pH lakes (pH 5.0-5.5). Although brook trout > 150 mm had higher brain AVT levels at low pH, no significant differences were detected for brook trout < 150 mm. We hypothesize that the sensitivity of brook trout at the parr stage to acid stress may be linked to their inability to mobilize a hormonal response involving AVT. The seasonal variation in brain AVT levels was similar in all the lakes studied, summer levels being the highest. Although this field study revealed that AVT levels depend also on factors other than acid stress (body size and season), our ANCOVA models allow adjustment for the effects of these covariables. Analyses of this type can be used to field test and calibrate biomarkers for use in ecotoxicology.



1990 ◽  
Vol 68 (6) ◽  
pp. 1270-1280 ◽  
Author(s):  
G. L. Lacroix ◽  
D. J. Hood ◽  
C. S. Belfry ◽  
T. G. Rand

Plasma electrolytes and gill [Al] were determined and gill morphology and histology were examined in Atlantic salmon (Salmo salar) parr and brook trout (Salvelinus fontinalis) from feral populations in acidic streams of southwest Nova Scotia. Plasma [Na+] and [Cl−] were lowest in fish from streams with the lowest pH levels, but there were no correlations between plasma [Na+] or [Cl−] and exchangeable [Al] in streams for both species. Gill [Al] increased exponentially with increasing exchangeable [Al] in water, but was less than 100 μg/g dry weight in both species. There were no correlations between plasma [Na+] or [Cl−] and gill [Al] for both species, and plasma [Na+] and [Cl−] were ultimately linked to low pH. Scanning electron microscopy of gills showed normal primary and secondary lamellae, with few signs of fusion or hyperplasia, only a slight amount of mucus, regular chloride cell crypts, and epithelial cells with distinct microridges. Histology of gill sections showed few lesions in the primary lamellae but some focal histologic lesions in the secondary lamellae of greater than 50% of fish, regardless of ambient pH or [Al]. The histopathology included hypertrophy of individual epithelial, mucous, and chloride cells, clubbing of tips of secondary lamellae, and localized epithelial hyperplasia. These features were focal and not comparable to the extensive morphological changes or histologic lesions usually attributed to high [Al] at low pH. Dissolved organic carbon concentrations greater than 5 mg/L in the acidic streams apparently afforded protection against Al effects at concentrations of at least 360 μg total Al/L.



Sign in / Sign up

Export Citation Format

Share Document