Dispersal and Recruitment of Zebra Mussel (Dreissena polymorpha) in a Nearshore Area in West-central Lake Erie: The Significance of Postmetamorphic Drifting

1993 ◽  
Vol 50 (1) ◽  
pp. 3-12 ◽  
Author(s):  
André Martel

Quantitative evidence that early postmetamorphic stages of zebra mussel (Dreissena polymorpha) can disperse in the water column and colonize substrates has been obtained using off-bottom scouring pad collectors and plankton sampling in a nearshore, shallow-water area (2–7 m) near Wheatley, Lake Erie, during August 1991. Collectors were deployed for 24–72 h, thus minimizing growth of recruits during deployments. Size criteria determined through an in situ growth experiment were used to discriminate between individuals arriving at a collector as (1) settling larvae or (2) postmetamorphic stages. During certain periods, 20–80% of individuals settling on collectors were postmetamorphic stages. Plankton samples taken near collectors also confirmed the presence of postmetamorphic stages in the water column. Most drifting juveniles ranged from about 300 μm shell length to 800 μm (some up to 1–2 mm). Although settlement by postmetamorphic stages occurred during various periods, they drifted and settled on collectors in much higher numbers during periods of strong wave action generated during storms. Colonization of natural and man-made substrates by postmetamorphic stages may be significant in exposed or turbulent areas and may impact on population dynamics. Whether postmetamorphic drifting is adaptive and which mechanisms are involved are unknown.

1995 ◽  
Vol 52 (2) ◽  
pp. 381-390 ◽  
Author(s):  
Charles P. Madenjian

A bioenergetics model for growth of a zebra mussel (Dreissena polymorpha) individual was verified with observations on zebra mussel growth in western Lake Erie. The bioenergetics model was then applied to the zebra mussel population in the western basin of Lake Erie to estimate the removal of phytoplankton by mussels. According to the modeling results, the zebra mussel population consumed 5.0 million tonnes of phytoplankton, while 1.4 million tonnes of phytoplankton was deposited in pseudofeces from the mussels. Thus, a total of 6.4 ± 2.4 million tonnes of phytoplankton was removed from the water column by zebra mussel in western Lake Erie during 1990. Primary production was estimated to be 24.8 million tonnes; therefore, zebra mussel removed the equivalent of 26 ± 10% of the primary production for western Lake Erie.


1997 ◽  
Vol 54 (7) ◽  
pp. 1630-1638 ◽  
Author(s):  
P L Klerks ◽  
P C Fraleigh ◽  
J E Lawniczak

This research demonstrated the impact of high densities of the zebra mussel (Dreissena polymorpha) on the cycling of copper, nickel, and zinc in a lake environment. Experiments with mussels on sedimentation traps in western Lake Erie and with mussels in flow-through tanks receiving Lake Erie water showed that zebra mussels remove metals from the water column, incorporate metals in their tissues, and deposit metals on the lake bottom. Removal of metals from the water column was estimated at 10-17% · day-1 of the amounts present. This material was largely deposited on the lake bottom; zebra mussels more than doubled the rate at which metals were being added to the lake bottom. Metal biodeposition rates were extremely high (e.g., 50 mg Zn · m-2 · day-1) in high-turbidity areas with elevated metal levels. Two factors contributed to metal biodeposition by zebra mussels. First, their production of feces and pseudofeces increased the rate at which suspended matter was being added to the sediment (accounting for 92% of the increased metal biodeposition). Second, the material coming out of suspension had higher metal concentrations when zebra mussels were present (constituting 8% of the increased biodeposition).


1993 ◽  
Vol 50 (11) ◽  
pp. 2298-2304 ◽  
Author(s):  
R. Dermott ◽  
M. Munawar

Large populations of the exotic rounded (noncarinate) shelled mussel of the genus Dreissena were found to exist on soft sediments collected throughout the central and eastern basins of Lake Erie during July and August 1992. Two different phenotypes were present on fine sediments (<150 μm) in the eastern basin. An elongated white morph was common on the profundal sediments beyond 40 m depth, while the "quagga" mussel was common on sand and sandy silt at depths between 10 and 30 m. Together with the carinated zebra mussel Dreissena polymorpha, which is very abundant on hard substrates in the sublittoral region, at least 80% of Lake Erie's bottom sediments have been invaded by Dreissena. Only that region of the central basin (near Cleveland) which undergoes periodic summer anoxia was not inhabited by this genus.


2001 ◽  
Vol 58 (6) ◽  
pp. 1208-1221 ◽  
Author(s):  
Henry A Vanderploeg ◽  
James R Liebig ◽  
Wayne W Carmichael ◽  
Megan A Agy ◽  
Thomas H Johengen ◽  
...  

Microcystis aeruginosa, a planktonic colonial cyanobacterium, was not abundant in the 2-year period before zebra mussel (Dreissena polymorpha) establishment in Saginaw Bay (Lake Huron) but became abundant in three of five summers subsequent of mussel establishment. Using novel methods, we determined clearance, capture, and assimilation rates for zebra mussels feeding on natural and laboratory M. aeruginosa strains offered alone or in combination with other algae. Results were consistent with the hypothesis that zebra mussels promoted blooms of toxic M. aeruginosa in Saginaw Bay, western Lake Erie, and other lakes through selective rejection in pseudofeces. Mussels exhibited high feeding rates similar to those seen for a highly desirable food alga (Cryptomonas) with both large ( >53 µm) and small (<53 µm) colonies of a nontoxic and a toxic laboratory strain of M. aeruginosa known to cause blockage of feeding in zooplankton. In experiments with naturally occurring toxic M. aeruginosa from Saginaw Bay and Lake Erie and a toxic isolate from Lake Erie, mussels exhibited lowered or normal filtering rates with rejection of M. aeruginosa in pseudofeces. Selective rejection depended on "unpalatable" toxic strains of M. aeruginosa occurring as large colonies that could be rejected efficiently while small desirable algae were ingested.


2020 ◽  
Author(s):  
Tadros R. Ghobrial ◽  
Mark R. Loewen

Abstract. In northern rivers, turbulent water becomes supercooled (i.e. cooled to slightly below 0 °C) when exposed to freezing air temperatures. In supercooled water, frazil (small ice disks) crystals are generated in the water column and anchor ice starts to form on the bed. Two anchor ice formation mechanisms have been reported in the literature: either by the accumulation of suspended frazil particles, which are adhesive (sticky) in nature, on the river bed; or by in situ growth of ice crystals on the bed material. Once anchor ice has formed on the bed, the accumulation typically continues to grow (either due to further frazil accumulation and/or crystal growth) until release occurs due to mechanical (shear force by the flow or buoyancy of the accumulation) or thermal (warming of the water column which weakens the ice-substrate bond) forcing or a combination of the two. Although detailed laboratory experiments have been reported to study anchor ice, but very few field measurements of anchor ice processes have been reported. These measurements have relied on either sampling anchor ice accumulations from the river bed, or qualitatively describing the observed formation and release. In this study, a custom-built imaging system (camera and lighting) was developed to capture high-resolution digital images of anchor ice formation and release on the river bed. A total of six anchor ice events were successfully captured in the time-lapse images and for the first time, the different initiation, growth and release mechanisms were measured in the field. Four stages of the anchor ice cycle were identified, namely: Stage 1: initiation by in situ crystal growth, Stage 2: transitional phase, Stage 3: linear growth, and Stage 4: release phase. Anchor ice initiation due to in situ growth was observed in three events and in the remainder the accumulation appeared to be initiated by frazil deposition. The Stage 1 growth rates ranged from 1.3 to 2.0 cm/hr and the Stage 2 and 3 growth rates varied from 0.3 to 0.9 cm/hr. Anchor ice was observed releasing from the bed in three modes referred to as lifting, shearing and rapid.


2021 ◽  
Vol 15 (1) ◽  
pp. 49-67
Author(s):  
Tadros R. Ghobrial ◽  
Mark R. Loewen

Abstract. In northern rivers, turbulent water becomes supercooled (i.e. cooled to slightly below the freezing point) when exposed to freezing air temperatures. In supercooled turbulent water, frazil (small ice disks) crystals are generated in the water column, and anchor ice starts to form on the bed. Two anchor ice formation mechanisms have been reported in the literature: either by the accumulation of suspended frazil particles, which are adhesive (sticky) in nature, on the riverbed or by in situ growth of ice crystals on the bed material. Once anchor ice has formed on the bed, the accumulation typically continues to grow (due to either further frazil accumulation and/or crystal growth) until release occurs due to mechanical (shear force by the flow or buoyancy of the accumulation) or thermal (warming of the water column which weakens the ice-substrate bond) forcing or a combination of the two. There have been a number of detailed laboratory studies of anchor ice reported in the literature, but very few field measurements of anchor ice processes have been reported. These measurements have relied on either sampling anchor ice accumulations from the riverbed or qualitatively describing the observed formation and release. In this study, a custom-built imaging system (camera and lighting) was developed to capture high-resolution digital images of anchor ice formation and release on the riverbed. A total of six anchor ice events were successfully captured in the time-lapse images, and for the first time, the different initiation, growth, and release mechanisms were measured in the field. Four stages of the anchor ice cycle were identified: Stage 1: initiation by in situ crystal growth; Stage 2: transitional phase; Stage 3: linear growth; and Stage 4: release phase. Anchor ice initiation due to in situ growth was observed in three events, and in the remainder, the accumulation appeared to be initiated by frazil deposition. The Stage 1 growth rates ranged from 1.3 to 2.0 cm/h, and the Stage 2 and 3 growth rates varied from 0.3 to 0.9 cm/h. Anchor ice was observed releasing from the bed in three modes: lifting of the entire accumulation, shearing of layers of the accumulation, and rapid release of the entire accumulation.


2020 ◽  
Vol 27 (3) ◽  
Author(s):  
E. I. Svergun ◽  
◽  
A. V. Zimin ◽  
◽  
◽  
...  

Purpose. The paper is aimed at evaluating the characteristics of short-period internal waves in different regions of the Avacha Bay in the Рacific Ocean concerning their hydrological and morphometric conditions. Methods and Results. The characteristics of internal waves are assessed through synthesizing the results of the in situ studies in the Avacha Bay in August-September, 2018, the high-resolution remote sensing data and the results of tidal modeling. The data of the in situ and satellite observations of internal waves were also directly compared. The results show that in the shallow part of the Avacha Bay, the waves, whose heights are from 10 to 15 m were observed. They constitute 10 % of the total number of cases. In the deep-water part of the bay, the internal waves are also often observed, but their maximum height does not exceed 10 m. The satellite images show 72 manifestations of short-period internal waves. Some of them spread to the coast with a tidal frequency from the generation source located around the 500 m isobath where the bottom abruptly slows down. Conclusions. The results of the investigation revealed a pronounced relationship between the wave trains recorded in the shallow-water area and the semidiurnal tidal dynamics. Analysis of the hydrological situation and the satellite images permitted to assume that the internal waves could be generated as a result of not only a barotropic tide collapse, but also due to the inertial oscillations of the frontal zone formed by the Kamchatka current meanders in the presence of a shallow sharpened pycnocline. Having been analyzed, the synchronous satellite and in situ observations made it possible to find out that the internal waves of the 5–8 m height were distinctly manifested on the sea surface in case the pycnocline depth was 10–20 m.


1992 ◽  
Vol 70 (12) ◽  
pp. 2486-2490 ◽  
Author(s):  
Diana J. Hamilton

Zebra mussels (Dreissena polymorpha) are subject to size-selective predation by several species of diving ducks and fish in Europe and North America. Ingested mussels are crushed, but the internal septum in the umbonal region of the mussel usually remains intact. Using mussels collected at Point Pelee, Lake Erie, I showed that there is a strong relationship between the length of the septum and of the mussel (r2 = 0.96). I compared this with a similar relationship developed for European zebra mussels and tested both models on mussels collected from Point Pelee and from Stoney Point, Lake St. Clair. Septal length relative to mussel length was greatest at Stoney Point and least at Point Pelee. The European estimates fell between the two. I concluded that to obtain accurate estimates of mussel length when investigating size-selective predation on zebra mussels, the relationship between mussel and septal lengths should be determined at each study location.


1995 ◽  
Vol 73 (8) ◽  
pp. 1438-1443 ◽  
Author(s):  
Patricia A. Wisenden ◽  
Robert C. Bailey

We used artificial substrates (rocks < 1500 cm2 surface area) in shallow water (2 m) to assess the development of epilithic macroinvertebrate communities in the presence of zebra mussels. At a turbulent site (Wheatley, Lake Erie), previously colonized (with a non-zebra mussel community) and uncolonized rocks left for 1 year both had lower densities of total invertebrates than previously colonized rocks recovered after only 1 day. As zebra mussels colonized the rocks, Gammarus sp. (amphipods) increased in density, while Chironomini and Tanypodinae (midges), Polycentropus sp. (caddisflies), and Physella sp. and Pleurocera sp. (snails) declined. At a protected site (Stoney Point, Lake St. Clair), previously colonized rocks initially (2 months) had higher densities of many taxa, including zebra mussels, than uncolonized rocks. This difference disappeared after 1 year, as zebra mussels increased on all rocks. Gammarus sp. maintained its numbers, while Tricladida (flatworms) increased and Oecetis sp. (caddisflies), Physella sp., Pleurocera sp., and Tanypodinae declined. Although a similar "zebra mussel – amphipod" community developed on rocks at both sites, we hypothesize that at the turbulent site, zebra mussels and amphipods have a shared tolerance of unstable habitats, and zebra mussels facilitate amphipod colonization of rocks by increasing microhabitat stability and food supply. At the protected site, zebra mussels outcompete other surface dwellers like snails for space, and facilitate the colonization of scavenger–omnivores like amphipods and flatworms.


Sign in / Sign up

Export Citation Format

Share Document