Influence of extended water column mixing during the first 2 years of hypolimnetic oxygenation on the phytoplankton community of Amisk Lake, Alberta

1997 ◽  
Vol 54 (9) ◽  
pp. 2133-2145 ◽  
Author(s):  
D J Webb ◽  
R D Robarts ◽  
E E Prepas

The phytoplankton community, physical variables, and nutrient and chlorophyll a (Chl a) concentrations were monitored during the first two of six open-water seasons of hypolimnetic oxygenation in double-basined Amisk Lake, Alberta. Deep mixing of the water column in the treated basin (Zmax = 34 m) in spring was enhanced by hypolimnetic oxygenation. Oxygenation began in June 1988, when stratification was likely already established, but subsequent year-round treatment favoured an extended spring diatom bloom (Asterionella formosa and Cyclotella spp.), followed by a delay in the development of, and reduction in the severity of, cyanobacterial blooms (Aphanizomenon flos-aquae and Anabaena flos-aquae) in 1989. Historically, mean summer Chl a and total phosphorus (TP) concentrations in the euphotic zone (0-6 m) of the treated basin were 15.9 ± 1.6 and 33.5 ± 1.5 µg ·L-1, respectively, indicating a eutrophic lake. In 1988 and 1989, mean summer Chl a (10.0 ± 0.6 and 8.1 ± 0.7 µg ·L-1, respectively) and TP concentrations (29.0 ± 0.5 and 22.5 ± 0.9 µg ·L-1, respectively) in this stratum were lower than historic values (P < 0.05), indicating that the trophic status of Amisk Lake had shifted towards mesotrophy.


2016 ◽  
Vol 76 (s1) ◽  
Author(s):  
Mariano Bresciani ◽  
Claudia Giardino ◽  
Rosaria Lauceri ◽  
Erica Matta ◽  
Ilaria Cazzaniga ◽  
...  

Cyanobacterial blooms occur in many parts of the world as a result of entirely natural causes or human activity. Due to their negative effects on water resources, efforts are made to monitor cyanobacteria dynamics. This study discusses the contribution of remote sensing methods for mapping cyanobacterial blooms in lakes in northern Italy. Semi-empirical approaches were used to flag scum and cyanobacteria and spectral inversion of bio-optical models was adopted to retrieve chlorophyll-a (Chl-a) concentrations. Landsat-8 OLI data provided us both the spatial distribution of Chl-a concentrations in a small eutrophic lake and the patchy distribution of scum in Lake Como. ENVISAT MERIS time series collected from 2003 to 2011 enabled the identification of dates when cyanobacterial blooms affected water quality in three small meso-eutrophic lakes in the same region. On average, algal blooms occurred in the three lakes for about 5 days a year, typically in late summer and early autumn. A suite of hyperspectral sensors on air- and space-borne platforms was used to map Chl-a concentrations in the productive waters of the Mantua lakes, finding values in the range of 20 to 100 mgm-3. The present findings were obtained by applying state of the art of methods applied to remote sensing data. Further research will focus on improving the accuracy of cyanobacteria mapping and adapting the algorithms to the new-generation of satellite sensors.



Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3640
Author(s):  
Md Mamun ◽  
Usman Atique ◽  
Kwang-Guk An

Water quality degradation is one of the most pressing environmental challenges in reservoirs around the world and makes the trophic status assessment of reservoirs essential for their restoration and sustainable use. The main aims of this study were to determine the spatial variations in water quality and trophic state of 204 South Korean reservoirs at different altitude levels. The results demonstrated mean total phosphorus (TP), chlorophyll-a (CHL-a), total suspended solids (TSS), organic matter indicators (chemical oxygen demand: COD; total organic carbon: TOC), water temperature (WT), and electrical conductivity (EC) remain consistently higher in the very lowland reservoirs (VLLR) than those in other altitudes, due to sedimentary or alluvial watersheds. The average TP and CHL-a levels in VLLR crossed the limit of the eutrophic water, symptomizing a moderate risk of cyanobacterial blooms. Empirical models were developed to identify critical variables controlling algal biomass and water clarity in reservoirs. The empirical analyses of all reservoir categories illustrated TP as a better predictor of CHL-a (R2 = 0.44, p < 0.01) than TN (R2 = 0.02, p < 0.05) as well as showed strong P-limitation based on TN:TP ratios. The algal productivity of VLLR (R2 = 0.61, p < 0.01) was limited by phosphorus, while highland reservoirs (HLR) were phosphorus (R2 = 0.23, p < 0.03) and light-limited (R2 = 0.31, p < 0.01). However, TSS showed a highly significant influence on water clarity compared to TP and algal CHL-a in all reservoirs. TP and TSS explained 47% and 34% of the variance in non-algal turbidity (NAT) in HLR. In contrast, the TP and TSS variances were 18% and 29% in midland reservoirs (MLR) and 32% and 20% in LLR. The trophic state index (TSI) of selected reservoirs varied between mesotrophic to eutrophic states as per TSI (TP), TSI (CHL-a), and TSI (SD). Mean TSI (CHL-a) indicated all reservoirs as eutrophic. Trophic state index deviation (TSID) assessment also complemented the phosphorus limitation characterized by the blue-green algae (BGA) domination in all reservoirs. Overall, reservoirs at varying altitudes reflect the multiplying impacts of anthropogenic factors on water quality, which can provide valuable insights into reservoir water quality management.



Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1504 ◽  
Author(s):  
Min Zhang ◽  
Zhipan Niu ◽  
Qinghua Cai ◽  
Yaoyang Xu ◽  
Xiaodong Qu

Hydrodynamic conditions are considered to be very important in the control of algal blooms. Weekly or daily measurements may miss some important events in the hydrodynamic process, resulting in inaccurate evaluations of the impacts of hydrodynamics on phytoplankton. In this study, high-frequency (15-min interval) measurements were used to analyze the effect of water column stability on surface chlorophyll a (Chl a) and lag time under different nutrient backgrounds during a cyanobacterial bloom in the Three Gorges Reservoir, China. Cross-correlation analysis between the relative water column stability (RWCS) and Chl a was performed at different stages. The results showed that the RWCS above the euphotic depth influenced the surface Chl a concentration most significantly. A lower RWCS (<20) limited the increase in the Chl a concentration, and a higher RWCS caused a significant increase in Chl a only when nutrients were not limited (TN/TP < 29) and light and temperature conditions were suitable. It took a short time for a higher RWCS to significantly increase the surface Chl a concentration compared with a lower RWCS. When the waterbody had a very low Chl a concentration (almost 0), approximately 2 days were needed to significantly increase the Chl a concentration, while approximately only half an hour was needed when the background concentration of Chl a was slightly higher. During the bloom period, a decline in the RWCS significantly decreased the Chl a in a very short time (approximately half an hour). Reducing the water column stability could be a good approach to control cyanobacterial blooms.



1994 ◽  
Vol 51 (12) ◽  
pp. 2825-2833 ◽  
Author(s):  
Lars-Anders Hansson ◽  
Lars G. Rudstam ◽  
Timothy B. Johnson ◽  
Patricia Soranno ◽  
Yvonne Allen

In the large, dimictic, and highly productive Lake Mendota (Wisconsin, USA), the recruitment rates from sediment to water were determined for some characteristic and dominating algal species during a 1-yr cycle. Quantifying recruitment in relation to abundance in the water on a whole-lake basis revealed that recruitment usually accounted for less than 1% of the total standing stock of each species per day, indicating that recruitment may not be an important population variable in Lake Mendota, but may instead function as an inoculum for future growth in the water column. The recruitment of Cryptomonas erosa and Ceratium hirundinella showed a dephasing among sites, suggesting that algae on the sediment surface rise into the water column in response to some depth-related cue. With the exception of one recruitment period for Aphanizomenon, no recruitment was recorded below the thermocline during the stratification period, indicating that a variable associated with stratified conditions affected algal movements from the hypolimnion to the euphotic zone. We argue that the understanding of recruitment patterns from sediment to water is a key factor in managing algal blooms in highly productive lakes.



2021 ◽  
Vol 80 (2) ◽  
Author(s):  
Eloy Montero ◽  
Gabriela Vázquez ◽  
Margarita Caballero ◽  
Mario E. Favila ◽  
Fernando Martínez-Jerónimo

The occurrence of cyanobacterial blooms has increased globally over the last decades, with the combined effect of climate change and eutrophication as its main drivers. The seasonal dynamic of cyanobacterial blooms is a well-known phenomenon in lakes and reservoirs in temperate zones. Nevertheless, in the tropics, most studies have been performed in shallow and artificial lakes; therefore, the seasonal dynamic of cyanobacterial blooms in deep and eutrophic tropical lakes is still under research. We studied the seasonal variation of the phytoplankton community and the factors associated with Microcystis aeruginosa blooms along the water column of Lake Alberca de Tacámbaro, a warm monomictic crater lake located in Mexico, during 2018 and 2019. According to previous studies performed in 2006 and 2010, this lake was mesotrophic-eutrophic, with Chlorophyta and Bacillariophyta as the dominant groups of the phytoplankton community. During 2018 and 2019, the lake was eutrophic and occasionally, hypertrophic, a phenomenon likely associated with the increase of farmland area around the lake. The dominant species was M. aeruginosa, forming blooms from the surface to 10 m depth in winter, in the hypolimnion in spring and summer, and along the full water column in autumn. These findings suggest that M. aeruginosa in Lake Alberca de Tacámbaro displays seasonal and spatial population dynamics. Total phosphorus, dissolved inorganic nitrogen, water temperature and photosynthetically active radiation were the environmental factors related to M. aeruginosa blooms. Our results suggest that the changes in the structure of the phytoplankton community through time, and M. aeruginosa blooms in Lake Alberca de Tacámbaro, are mainly related to changes in land use from forest to farmland in areas adjacent to the lake, which promoted its eutrophication in the last years through runoffs. Comparative studies with other deep and eutrophic lakes will allow us to gain a deeper understanding of the dynamic of cyanobacterial blooms in natural and artificial water reservoirs strongly stressed by human activities.



Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 675 ◽  
Author(s):  
Nicola Chirico ◽  
Diana C. António ◽  
Luca Pozzoli ◽  
Dimitar Marinov ◽  
Anna Malagó ◽  
...  

Cyanobacteria blooms are a worldwide concern for water bodies and may be promoted by eutrophication and climate change. The prediction of cyanobacterial blooms and identification of the main triggering factors are of paramount importance for water management. In this study, we analyzed a comprehensive dataset including ten-years measurements collected at Lake Varese, an eutrophic lake in Northern Italy. Microscopic analysis of the water samples was performed to characterize the community distribution and dynamics along the years. We observed that cyanobacteria represented a significant fraction of the phytoplankton community, up to 60% as biovolume, and a shift in the phytoplankton community distribution towards cyanobacteria dominance onwards 2010 was detected. The relationships between cyanobacteria biovolume, nutrients, and environmental parameters were investigated through simple and multiple linear regressions. We found that 14-days average air temperature together with total phosphorus may only partly explain the cyanobacteria biovolume variance at Lake Varese. However, weather forecasts can be used to predict an algal outbreak two weeks in advance and, eventually, to adopt management actions. The prediction of cyanobacteria algal blooms remains challenging and more frequent samplings, combined with the microscopy analysis and the metagenomics technique, would allow a more conclusive analysis.



2020 ◽  
Author(s):  
Mengyuan Zhu ◽  
Guangwei Zhu ◽  
Hans Paerl ◽  
Wei Zhang ◽  
Hai Xu

&lt;p&gt;Daily monitoring over a period of one year in Lake Taihu, China, included chlorophyll a (Chl-a) and nutrient measurements, determining the taxonomic composition of the phytoplankton community and various water column physicochemical parameters. Chl-a and nutrient concentrations showed strong circadian variations &amp;#8210; Chl-a rised during daylight hours, while ammonium and phosphate rised at night. Chl-a concentrations also showed strong seasonal variations, with one annual peak in spring and another from summer to autumn, dominated by Dolichospermum spp. and Microcystis spp. respectively. Temperature appeared to exert the most important effect in this species succession. A nutrient&amp;#8210;Chl-a balance calculation indicated that both nitrogen and phosphorus in the water column could be limiting factors for phytoplankton growth during bloom periods. Over two thirds of particulate nutrients was attributed to phytoplankton biomass during blooms. Daily (or weekly) monitoring data provided more precise description of water quality, capturing short-term peaks in phytoplankton biomass, and reduced risks of under- or overestimating trophic levels in lakes, which always happened when using monthly monitoring data.&lt;/p&gt;



2020 ◽  
Author(s):  
Benedikt Ehrenfels ◽  
Maciej Bartosiewicz ◽  
Athanasio S. Mbonde ◽  
Kathrin B. L. Baumann ◽  
Christian Dinkel ◽  
...  

Abstract. In spite of the fact that cyanobacterial blooms are classically associated with high nutrient loadings, there is also abundant evidence revealing that nitrogen fixing cyanobacteria (diazotrophs) can prevail under oligotrophic conditions. The mechanisms favouring diazotrophs in oligotrophic water bodies remain, however, poorly resolved. Here we analyse biogeochemical and ecological factors regulating the distribution of nitrogen fixing cyanobacteria in the oligotrophic Lake Tanganyika using sensor profiles of hydrodynamic conditions, nutrient and pigment analyses, as well as phytoplankton community assessment. During periods of stable or re-establishing water column stratification, we find evidence that the location of the thermocline and the euphotic depth can create a functional niche for diazotrophic cyanobacteria: Nitrogen limitation provides an ecological advantage for an apparent mutualistic interaction between diazotrophs and diatoms when the upward transport of nitrate into the euphotic zone is reduced by a subjacent thermocline. Diazotrophs, comprising the filamentous genera Dolichospermum and Anabaenopsis, are key players under these conditions (up to 41.7 % of phytoplankton community), while they are rare otherwise. By contrast, a thermocline located within the euphotic zone allows rapid vertical transport of nitrate for a thriving nitrate assimilating phytoplankton community that evidently outcompetes diazotrophs. Finally, multiple observations of relatively high diazotroph densities in the upwelling region in the South of Lake Tanganyika imply that they may additionally thrive under high nutrient conditions, when nitrogen is heavily deficient with respect to phosphorous. This study highlights that, under nitrogen deficient conditions, cyanobacterial blooms may form in response to reduced nutrient fluxes to the productive surface waters.



2020 ◽  
Vol 32 (3) ◽  
pp. 223-237
Author(s):  
Jade P. Lawrence ◽  
Peter T. Doran ◽  
Luke A. Winslow ◽  
John C. Priscu

AbstractBrine beneath Taylor Glacier has been proposed to enter the proglacial west lobe of Lake Bonney (WLB) as well as from Blood Falls, a surface discharge point at the Taylor Glacier terminus. The brine strongly influences the geochemistry of the water column of WLB. Year-round measurements from this study are the first to definitively identify brine intrusions from a subglacial entry point into WLB. Furthermore, we excluded input from Blood Falls by focusing on winter dynamics when the absence of an open water moat prevents surface brine entry. Due to the extremely high salinities below the chemocline in WLB, density stratification is dominated by salinity, and temperature can be used as a passive tracer. Cold brine intrusions enter WLB at the glacier face and intrude into the water column at the depth of neutral buoyancy, where they can be identified by anomalously cold temperatures at that depth. High-resolution measurements also reveal under-ice internal waves associated with katabatic wind events, a novel finding that challenges long-held assumptions about the stability of the WLB water column.



2018 ◽  
Vol 15 (1) ◽  
pp. 209-231 ◽  
Author(s):  
Stacy Deppeler ◽  
Katherina Petrou ◽  
Kai G. Schulz ◽  
Karen Westwood ◽  
Imojen Pearce ◽  
...  

Abstract. High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm) to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a) and particulate organic matter (POM) in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels  ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C), causing significant reductions in gross primary production (GPP14C), Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs) and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments  ≥ 953 µatm (days 3–5), yet gross bacterial production (GBP14C) remained unchanged and cell-specific bacterial productivity (csBP14C) was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON) combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative effects on the Antarctic food web and the biological pump, resulting in negative feedbacks on anthropogenic CO2 uptake. Increases in bacterial abundance under high CO2 conditions may also increase the efficiency of the microbial loop, resulting in increased organic matter remineralisation and further declines in carbon sequestration.



Sign in / Sign up

Export Citation Format

Share Document