Isolation and mapping of microsatellite markers specific for the D genome of bread wheat

Genome ◽  
2000 ◽  
Vol 43 (4) ◽  
pp. 689-697 ◽  
Author(s):  
E Pestsova ◽  
M W Ganal ◽  
M S Röder

The potential of Aegilops tauschii, the diploid progenitor of the D genome of wheat, as a source of microsatellite markers for hexaploid bread wheat was investigated. By screening lambda phage and plasmid libraries of Ae. tauschii genomic DNA, dinucleotide microsatellites containing GA and GT motifs were isolated and a total of 65 functional microsatellite markers were developed. All primer pairs that were functional in Ae. tauschii amplified well in hexaploid wheat. Fifty-five loci amplified by 48 primer sets were placed onto a genetic framework map of the reference population of the International Triticeae Mapping Initiative (ITMI) 'Opata 85' × 'W7984'. The majority of microsatellite markers could be assigned to the chromosomes of the D genome of wheat. The distribution of the markers along the chromosomes is random. Chromosomal location of 22 loci nonpolymorphic in the reference population was determined using nullitetrasomic lines of Triticum aestivum 'Chinese Spring'. The results of this study demonstrate the value of microsatellite markers isolated from Ae. tauschii for the study of bread wheat. The microsatellite markers developed improve the existing wheat microsatellite map and can be used in a wide range of genetic studies and breeding programs.Key words: Aegilops tauschii, wheat, molecular markers, genetic map, simple sequence repeats.

Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 2007-2023 ◽  
Author(s):  
Marion S Röder ◽  
Victor Korzun ◽  
Katja Wendehake ◽  
Jens Plaschke ◽  
Marie-Hélène Tixier ◽  
...  

Abstract Hexaploid bread wheat (Triticum aestivum L. em. Thell) is one of the world's most important crop plants and displays a very low level of intraspecific polymorphism. We report the development of highly polymorphic microsatellite markers using procedures optimized for the large wheat genome. The isolation of microsatellite-containing clones from hypomethylated regions of the wheat genome increased the proportion of useful markers almost twofold. The majority (80%) of primer sets developed are genome-specific and detect only a single locus in one of the three genomes of bread wheat (A, B, or D). Only 20% of the markers detect more than one locus. A total of 279 loci amplified by 230 primer sets were placed onto a genetic framework map composed of RFLPs previously mapped in the reference population of the International Triticeae Mapping Initiative (ITMI) Opata 85 × W7984. Sixty-five microsatellites were mapped at a LOD >2.5, and 214 microsatellites were assigned to the most likely intervals. Ninety-three loci were mapped to the A genome, 115 to the B genome, and 71 to the D genome. The markers are randomly distributed along the linkage map, with clustering in several centromeric regions.


2017 ◽  
Author(s):  
Aleksey V. Zimin ◽  
Daniela Puiu ◽  
Richard Hall ◽  
Sarah Kingan ◽  
Bernardo J. Clavijo ◽  
...  

AbstractCommon bread wheat, Triticum aestivum, has one of the most complex genomes known to science, with 6 copies of each chromosome, enormous numbers of near-identical sequences scattered throughout, and an overall size of more than 15 billion bases. Multiple past attempts to assemble the genome have failed. Here we report the first successful assembly of T. aestivum, using deep sequencing coverage from a combination of short Illumina reads and very long Pacific Biosciences reads. The final assembly contains 15,344,693,583 bases and has a weighted average (N50) contig size of of 232,659 bases. This represents by far the most complete and contiguous assembly of the wheat genome to date, providing a strong foundation for future genetic studies of this important food crop. We also report how we used the recently published genome of Aegilops tauschii, the diploid ancestor of the wheat D genome, to identify 4,179,762,575 bp of T. aestivum that correspond to its D genome components.


2020 ◽  
Vol 20 (S1) ◽  
Author(s):  
Valeriya Vavilova ◽  
Irina Konopatskaia ◽  
Alexandr Blinov ◽  
Elena Ya. Kondratenko ◽  
Yuliya V. Kruchinina ◽  
...  

Abstract Background Threshability, rachis fragility and spike shape are critical traits for the domestication and evolution of wheat, determining the crop yield and efficiency of the harvest. Spelt factor gene Q controls a wide range of domestication-related traits in polyploid wheats, including those mentioned above. The main goal of the present study was to characterise the Q gene for uninvestigated accessions of wheats, including four endemics, and Aegilops accessions, and to analyze the species evolution based on differences in Q gene sequences. Results We have studied the spike morphology for 15 accessions of wheat species, including four endemics, namely Triticum macha, T. tibetanum, T. aestivum ssp. petropavlovskyi and T. spelta ssp. yunnanense, and 24 Aegilops accessions, which are donors of B and D genomes for polyploid wheat. The Q-5A, q-5D and q-5S genes were investigated, and a novel allele of the Q-5A gene was found in accessions of T. tibetanum (KU510 and KU515). This allele was similar to the Q allele of T. aestivum cv. Chinese Spring but had an insertion 161 bp in length within exon 5. This insertion led to a frameshift and premature stop codon formation. Thus, the T. tibetanum have spelt spikes, which is probably determined by the gene Tg, rather than Q. We determined the variability within the q-5D genes among hexaploid wheat and their D genome donor Aegilops tauschii. Moreover, we studied the accessions C21–5129, KU-2074, and K-1100 of Ae. tauschii ssp. strangulata, which could be involved in the origin of hexaploid wheats. Conclusions The variability and phylogenetic relationships of the Q gene sequences studied allowed us to clarify the relationships between species of the genus Triticum and to predict the donor of the D genome among the Ae. tauschii accessions. Ae. tauschii ssp. strangulata accessions C21–5129, KU-2074 and K-1100 are the most interesting among the analysed accessions, since their partial sequence of q-5D is identical to the q-5D of T. aestivum cv. Chinese Spring. This result indicates that the donor is Ae. tauschii ssp. strangulata but not Ae. tauschii ssp. tauschii. Our analysis allowed us to clarify the phylogenetic relationships in the genus Triticum.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Etienne Bezault ◽  
Xavier Rognon ◽  
Karim Gharbi ◽  
Jean-Francois Baroiller ◽  
Bernard Chevassus

The transfer of the genomic resources developed in the Nile tilapia, Oreochromis niloticus, to other Tilapiines sensu lato and African cichlid would provide new possibilities to study this amazing group from genetics, ecology, evolution, aquaculture, and conservation point of view. We tested the cross-species amplification of 32 O. niloticus microsatellite markers in a panel of 15 species from 5 different African cichlid tribes: Oreochromines (Oreochromis, Sarotherodon), Boreotilapiines (Tilapia), Chromidotilapines, Hemichromines, and Haplochromines. Amplification was successfully observed for 29 markers (91%), with a frequency of polymorphic (P95) loci per species around 70%. The mean number of alleles per locus and species was 3.2 but varied from 3.7 within Oreochromis species to 1.6 within the nontilapia species. The high level of cross-species amplification and polymorphism of the microsatellite markers tested in this study provides powerful tools for a wide range of molecular genetic studies within tilapia species as well as for other African cichlids.


2007 ◽  
Vol 3 (1) ◽  
pp. 77-82 ◽  
Author(s):  
Qi-Jiao Chen ◽  
Lian-Quan Zhang ◽  
You-Wei Yang ◽  
Zhong-Wei Yuan ◽  
Zhi-Guo Xiang ◽  
...  

Genome ◽  
2005 ◽  
Vol 48 (6) ◽  
pp. 1120-1126 ◽  
Author(s):  
Didier Lamoureux ◽  
Daniel G Peterson ◽  
Wanlong Li ◽  
John P Fellers ◽  
Bikram S Gill

We report the results of a study on the effectiveness of Cot filtration (CF) in the characterization of the gene space of bread wheat (Triticum aestivum L.), a large genome species (1C = 16 700 Mb) of tremendous agronomic importance. Using published Cot data as a guide, 2 genomic libraries for hexaploid wheat were constructed from the single-stranded DNA collected at Cot values > 1188 and 1639 M·s. Compared with sequences from a whole genome shotgun library from Aegilops tauschii (the D genome donor of bread wheat), the CF libraries exhibited 13.7-fold enrichment in genes, 5.8-fold enrichment in unknown low-copy sequences, and a 3-fold reduction in repetitive DNA. CF is twice as efficient as methylation filtration at enriching wheat genes. This research suggests that, with improvements, CF will be a highly useful tool in sequencing the gene space of wheat.Key words: gene enrichment, renaturation kinetics, gene-rich regions, bread wheat.


1999 ◽  
Vol 99 (1-2) ◽  
pp. 16-26 ◽  
Author(s):  
E. V. Boyko ◽  
K. S. Gill ◽  
L. Mickelson-Young ◽  
S. Nasuda ◽  
W. J. Raupp ◽  
...  

2001 ◽  
Vol 52 (12) ◽  
pp. 1089 ◽  
Author(s):  
K. J. Chalmers ◽  
A. W. Campbell ◽  
J. Kretschmer ◽  
A. Karakousis ◽  
P. H. Henschke ◽  
...  

Genetic maps were compiled from the analysis of 160–180 doubled haploid lines derived from 3 crosses: Cranbrook Halberd, CD87 Katepwa, and Sunco Tasman. The parental wheat lines covered a wide range of the germplasm used in Australian wheat breeding. The linkage maps were constructed with RFLP, AFLP, microsatellite markers, known genes, and proteins. The numbers of markers placed on each map were 902 for Cranbrook Halberd, 505 for CD87 Katepwa, and 355 for Sunco Tasman. Most of the expected linkage groups could be determined, but 10–20% of markers could not be assigned to a specific linkage group. Homologous chromosomes could be aligned between the populations described here and linkage groups reported in the literature, based around the RFLP, protein, and microsatellite markers. For most chromosomes, colinearity of markers was found for the maps reported here and those recorded on published physical maps of wheat. AFLP markers proved to be effective in filling gaps in the maps. In addition, it was found that many AFLP markers defined specific genetic loci in wheat across all 3 populations. The quality of the maps and the density of markers differs for each population. Some chromosomes, particularly D genome chromosomes, are poorly covered. There was also evidence of segregation distortion in some regions, and the distribution of recombination events was uneven, with substantial numbers of doubled haploid lines in each population displaying one or more parental chromosomes. These features will affect the reliability of the maps in localising loci controlling some traits, particularly complex quantitative traits and traits of low heritability. The parents used to develop the mapping populations were selected based on their quality characteristics and the maps provide a basis for the analysis of the genetic control of components of processing quality. However, the parents also differ in resistance to several important diseases, in a range of physiological traits, and in tolerance to some abiotic stresses.


Genome ◽  
2000 ◽  
Vol 43 (4) ◽  
pp. 661-668 ◽  
Author(s):  
Tamás Lelley ◽  
Maria Stachel ◽  
Heinrich Grausgruber ◽  
Johann Vollmann

Sixty Aegilops tauschii accessions and 60 European hexaploid wheat varieties were analyzed with 14 wheat microsatellite (WMS) primer sets to (i) study the phylogeny of Ae. tauschii, (ii) search for a specific genotype of Ae. tauschii most closely related to the D genome of hexaploid wheat, and (iii) narrow down the presumed birthplace of the latter. An average of 6.5 and 4.0 alleles per locus was detected in Ae. tauschii and in wheat, respectively. The highest genetic diversity of Ae. tauschii was found in Transcaucasia and southeast of the Caspian Sea. Distribution of the 87 alleles (without null alleles) found in Aegilops did not allow differentiation of the species into the two subspecies strangulata and tauschii. Excluding null alleles, 41 alleles occurred parallel in wheat and in Aegilops. Data obtained in this study supports the view of the D genome of hexaploid wheat being a composite of several sources but does not support subsp. strangulata as the possible major source of the D genome. The highest number of region-specific alleles (three) in Ae. tauschii occurring also in the D genome of wheat, and therefore most indicative for its evolution was found in present-day Georgia, where subsp. strangulata is not endemic.Key words: Triticum aestivum, Aegilops tauschii, genetic distance, center of origin, evolution.


Sign in / Sign up

Export Citation Format

Share Document